

Microsoft Power BI Complete Reference

Bring your data to life with the powerful features of Microsoft
Power BI

Devin Knight
Brian Knight
Mitchell Pearson
Manuel Quintana
Brett Powell

BIRMINGHAM - MUMBAI

Microsoft Power BI Complete
Reference

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to
ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark
information about all of the companies and products mentioned
in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2018

Production reference:1171218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-004-5

www.packtpub.com

http://www.packtpub.com

About Packt

 mapt.io

Mapt is an online digital library that gives you full access to over
5,000 books and videos, as well as industry leading tools to help
you plan your personal development and advance your career.
For more information, please visit our website.

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with
practical eBooks and Videos from over 4,000 industry
professionals

Improve your learning with Skill Plans built especially for
you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade
to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get
in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Devin Knight a Microsoft Data Platform MVP and the Training
Director at Pragmatic Works. At Pragmatic Works, Devin
determines which courses are created, delivered, and updated
for customers, including 10+ Power BI courses. This is the
seventh SQL Server and Business Intelligence book that he has
authored. Devin often speaks at conferences such as PASS
Summit, PASS Business Analytics Conference, SQL Saturdays,
and Code Camps. He is also a contributing member to several
PASS Virtual Chapters. Making his home in Jacksonville, FL,
Devin is the Vice President of the local Power BI User Group and
SQL Server User Group (JSSUG). His personal blog can be found
at Devin Knight's website.

Brian Knight is the owner and founder of Pragmatic Works,
and is a serial entrepreneur, having also started up other
companies. Brian is a contributing columnist at several technical
magazines. He is the author of 16 technical books. Brian has
spoken at conferences such as PASS Summit, SQL Connections,
TechEd, SQLSaturdays, and Code Camps. He has received a
number of awards from the State of Florida, from both the
governor and press, including the Business Ambassador Award
(governor) and Top CEO (Jacksonville Magazine). His blog can
be found at Pragmatic Works website.

Thanks to everyone who made this book possible. As always, I owe a huge debt to my
wife, Jenn, for putting up with my late nights, and to my children, Colton, Liam,
Camille, and John, for being so patient with their tired dad who has always
overextended himself. Finally, I would like to thank Shawn Trautman, my line
dancing instructor. This will be the year that we complete the United Country

Western Dance Council's goal of making line dancing a competitive sport worldwide.

Mitchell Pearson has worked for Pragmatic Works for six
years as a Business Intelligence Consultant and Training Content
manager. Mitchell has experience developing enterprise level BI
Solutions using the full suite of products offered by Microsoft
(SSRS, SSIS, SSAS, and Power BI). Mitchell is very active in the
community presenting at local user groups, SQL Saturday
events, PASS virtual chapters and giving free webinars for
Pragmatic Works. He can also be found blogging at Mitchellsql
website. Mitchell is also the president of the local Power BI User
Group in Jacksonville, Florida. In his spare time, Mitchell
spends his time with his wife and three kids. For fun, Mitchell
enjoys playing tabletop games with friends.

I would like to thank God for the gifts and opportunities afforded me and most of all
for sending his son Jesus Christ. I would like to thank my wife and children for their
patience and support as I worked on this book. I would also like to thank Brian
Knight for the opportunity to learn and grow in the field of Business Intelligence.
Finally, I would like to thank Anthony Martin, Dustin Ryan, Bradley Schacht, Devin
Knight, Jorge Segarra, and Bradley Ball, each one of these individuals have provided
guidance and mentoring through the years and have had a profound impact on my
career.

Manuel Quintana is a Training Content Manager at Pragmatic
Works. Previously, he was a senior manager working in the hotel
industry. He joined the Pragmatic Works team in 2014 with no
knowledge in the Business Intelligence space, but now speaks at
SQL Saturdays and SQL Server User Groups locally and virtually.
He also teaches various BI technologies to many different
Fortune 500 companies on behalf of Pragmatic Works. Since
2014, he has called Jacksonville home and before that Orlando,

but he was born on the island of Puerto Rico and loves to go back
and visit his family. When he isn't working on creating new
content for Pragmatic Works, you can probably find him playing
board games or watching competitive soccer matches.

Thank you to all my family and friends who support me in all of my endeavors.
Special praise must be given to my wife for supporting me during late hours working
and some weekends being dedicated to writing this book, without her I wouldn't be
the person I am proud of being today. Also, I must say thank you to all my coworkers
at Pragmatic Works; each one of them has mentored me in one way or another, and
all my success can be traced back to them. I hope to make everyone mentioned here
proud of what I have done and what I will achieve.

Brett Powell is the owner of Frontline Analytics, a data and
analytics consulting firm and Microsoft Power BI partner. He
has worked with Power BI technologies since they were first
introduced with the Power Pivot add-in for Excel 2010 and has
contributed to the design and delivery of Microsoft BI solutions
across retail, manufacturing, finance, and professional services.
He is also the author of Microsoft Power BI Cookbook and a
regular speaker at Microsoft technology events such as the Power
BI World Tour and the Data & BI Summit. He regularly shares
technical tips and examples on his blog, Insight Quest, and is a
co-organizer of the Boston BI User Group.

I'd like to thank Packt for giving me this opportunity, the content and technical
editing teams, and particularly Divya Poojari, acquisition editor, and Amrita
Noronha, senior content development editor. As Power BI continues to evolve, it is
necessary to be flexible with the outline and page counts, and I greatly appreciated
this autonomy.

About the reviewers
Nick Lee is a Business Intelligence Consultant and trainer for
Pragmatic Works' training team. He comes from a customer
service background and has an ample amount of experience in
presenting and interacting with large Organizations. His focus at
Pragmatic Works is creating Power BI content and delivering
Power BI classes to our customers.

Ruben Oliva Ramos is a computer engineer from Tecnologico
of León Institute, with a master's degree in computer and
electronics systems engineering and networking specialization
from the University of Salle Bajio. He has more than 5 years'
experience of developing web apps to control and monitor
devices connected to Arduino and Raspberry Pi, using web
frameworks and cloud services to build IoT applications. He has
authored Raspberry Pi 3 Home Automation Projects, Internet of
Things Programming with JavaScript, Advanced Analytics
with R and Tableau, and SciPy Recipes for Packt.

What this book covers
Chapter 1, Getting Started with Importing Data Options, begins
by getting the audience oriented with the Power BI Desktop.
Next, they will learn how to connect to various common data
sources in Power BI. Once a data source is chosen, the options
within will be explored, including the choice between data
import, direct query, and live connection.

Chapter 2, Data Transformation Strategies, explores the
capabilities of the Power Query Editor inside the Power BI
Desktop. Using this Power BI Query Editor, the reader will first
learn how to do basic transformations, and they will quickly
learn more advanced data-cleansing practices. By the end of this
chapter, the audience will know how to combine queries, use
parameters, and read and write basic M queries.

Chapter 3, Building the Data Model, discusses one of the most
critical parts of building a successful Power BI solution—
designing an effective data model. In this chapter, readers will
learn that while designing a data model, they are really setting
themselves up for success when it comes to building reports.
Specifically, this chapter will teach the audience how to establish
relationships between tables, how to deal with complex
relationship designs, and how to implement usability
enhancements for the report consumers.

Chapter 4, Leveraging DAX, teaches that the Data Analysis
Expression (DAX) language within Power BI is critical to
building data models that are valuable to data consumers. While
DAX may be intimidating at first, readers will quickly learn that

its roots come from the Excel formula engine. This can be helpful
at first, but as you find the need to develop more and more
complex calculations, readers will learn that having a
background in Excel formulas will only take them so far. This
chapter will start with an understanding of basic DAX concepts
but quickly accelerate into more complex ideas, such as Time
Intelligence and Filter Context.

Chapter 5, Visualizing Data, describes how to take a finely tuned
data model and build reports that properly deliver a message
that clearly and concisely tells a story about the data.

Chapter 6, Using a Cloud Deployment with the Power BI Service,
examines deploying your solution to the Power BI Service to
share what you've developed with your organization. Once
deployed, you can build dashboards, share them with others, and
schedule data refreshes. This chapter will cover the essential
skills a BI professional would need to know to top off a Power BI
solution they have developed.

Chapter 7, Planning Power BI Projects, discusses alternative
deployment modes for Power BI, team and project roles, and
licensing. Additionally, an example project template and its
corresponding planning and dataset design processes are
described.

Chapter 8, Connecting to Sources and Transforming Data with M,
depicts the data access layer supporting a Power BI dataset,
including data sources and fact and dimension table queries.
Concepts of the Power Query M language, such as query folding
and parameters, are explained and examples of custom M
queries involving conditional and dynamic logic are given.

Chapter 9, Designing Import and DirectQuery Data Models,
reviews the components of the data model layer and design

techniques in support of usability, performance, and other
objectives.

Chapter 10, Developing DAX Measures and Security Roles, covers
the implementation of analysis expressions reflecting business
definitions and common analysis requirements. Primary DAX
functions, concepts, and use cases such as date intelligence, row-
level security roles, and performance testing are examined.

Chapter 11, Creating and Formatting Power BI Reports, describes
a report planning process, data visualization practices, and
report design fundamentals, including visual selection and filter
scopes. Top report development features, such as slicer visuals,
tooltips, and conditional formatting are also reviewed.

Chapter 12, Applying Custom Visuals, Animation, and Analytics,
examines powerful interactive and analytical features, including
drillthrough report pages, bookmarks, the Analytics pane,
ArcGIS Maps, and the waterfall charts. Additionally, examples of
custom visuals, such as the Power KPI, and the capabilities of
animation to support data storytelling are provided.

Chapter 13, Designing Power BI Dashboards and Architectures,
provides guidance on visual selection, layout, and supporting
tiles to drive effective dashboards. Alternative multi-dashboard
architectures, such as an organizational dashboard architecture,
are reviewed, is the configuration of dashboard tiles and mobile-
optimized dashboards.

Chapter 14, Managing Application Workspaces and Content,
features the role and administration of app workspaces in the
context of Power BI solutions and staged deployments.
Additionally, the Power BI REST API, content management
features, and practices are reviewed, including field descriptions
and version history.

Chapter 15, Managing the On-Premises Data Gateway, covers top
gateway planning considerations, including alternative gateway
architectures, workloads, and hardware requirements. Gateway
administration processes and tools are described, such as the
manage gateways portal, gateway log files, and PowerShell
Gateway commands.

Chapter 16, Deploying the Power BI Report Server, contrasts the
Power BI Report Server with the Power BI cloud service and
provides guidance on deployment topics such as licensing,
reference topology, configuration, administration, and upgrade
cycles.

Chapter 17, Creating Power BI Apps and Content Distribution,
walks through the process of publishing and updating apps for
groups of users. Additionally, other common distribution
methods are covered, such as the sharing of reports and
dashboards, email subscriptions, data-alert-driven emails, and
embedding Power BI content in SharePoint Online.

Chapter 18, Administering Power BI for an Organization,
highlights data governance for self-service and corporate BI,
Azure Active Directory features such as Conditional Access
Policies, and the Power BI admin portal. Details are provided
about configuring Power BI service tenant settings, managing
Power BI Premium capacities, and the tools available to monitor
Power BI activities.

Chapter 19, Scaling with Premium and Analysis Services, reviews
the capabilities of Power BI Premium and alternative methods
for allocating premium capacity. Additionally, Power BI datasets
are contrasted with Analysis Services models, Azure Analysis
Services is contrasted with SQL Server Analysis Services, and the
migration of a Power BI dataset to an Analysis Services model is
described.

Packt is searching for authors
like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with
thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community.
You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Title Page
Copyright

Microsoft Power BI Complete Reference

About Packt

Why subscribe?

PacktPub.com

Contributors

About the authors

About the reviewers

Packt is searching for authors like you

Preface

Who this book is for

What this book covers
To get the most out of this book

Download the example code files

Conventions used

Get in touch

Reviews

1. Getting Started with Importing Data Options

Getting started
Importing data

Excel as a source

SQL Server as a source

Web as a source

DirectQuery

Limitations

Live Connection

Limitations

Which should I choose?

Summary

2. Data Transformation Strategies

The Power Query Editor
Transform basics

Use First Row as Headers

Remove Columns

Change type

Add Column From Examples

Advanced data transformation options

Conditional Columns

Fill Down

Unpivot

Merging Queries

Appending Queries

Leveraging R

Installation and configuration

The R Script transform

M formula language

#shared

Summary

3. Building the Data Model

Building relationships

Editing relationships

Creating a new relationship

Working with complex relationships

Many-to-many relationships

Cross-filtering direction

Enabling filtering from the many side of a

relationship

Role-playing tables

Importing the date table

Usability enhancements

Hiding tables and columns

Renaming tables and columns

Default summarization

How to display one column but sort by another

Data categorization

Creating hierarchies

Summary

4. Leveraging DAX

Building calculated columns

String functions – Month, Year

Format function – Month Year

Age calculation

SWITCH() – age breakdown

Navigation functions – RELATED

Calculated measures – the basics

Calculated measure – basic aggregations

Total Sales

Total Cost

Profit
Profit Margin

Optional parameters

Filter context

Calculate

Percentage of total calculation
Time intelligence

Year to Date Sales

YTD Sales (Fiscal Calendar)

Prior Year Sales

Summary

5. Visualizing Data

Data visualization basics
Visuals for filtering

Interactive filtering

The Slicer visual

Visualizing tabular data

The table visual

The Matrix visual

Visualizing categorical data

Bar and Column charts

Pie and Donut charts

The Treemap visual

The Scatter chart

Visualizing trend data

Line and Area charts

Combo charts

The Ribbon Chart

The Waterfall Chart

The Funnel Chart

Visualizing KPI data

The Gauge visual

The KPI visual

Visualizing geographical data

The Map visual

The Filled Map visual

The Shape Map visual

The ArcGIS Map visual

Leveraging Power BI custom visuals
Data visualization tips and tricks

Edit interactions

The Analytics pane

The Top N filter

Show value as

Summary

6. Using a Cloud Deployment with the Power BI Service

Deploying to the Power BI service

DATASETS

WORKBOOKS

Creating and interacting with dashboards

Creating your first dashboard

Asking your dashboard a question

Subscribing to reports and dashboards

Sharing your dashboards

Workspaces

Setting up row-level security

Scheduling data refreshes

Summary

7. Planning Power BI Projects

Power BI deployment modes

Corporate BI

Self-Service Visualization

Self-Service BI

Choosing a deployment mode

Project discovery and ingestion

Sample Power BI project template

Sample template – Adventur

e Works BI

Power BI project roles

Dataset designer

Report authors

Power BI admin

Project role collaboration

Power BI licenses

Power BI license scenarios

Power BI Premium features

Data warehouse bus matrix
Dataset design process

Selecting the business process

Declaring the grain

Identifying the dimensions

Defining the facts

Data profiling
Dataset planning

Data transformations

DirectQuery mode

Sample project analysis

Summary

8. Connecting to Sources and Transforming Data with M

Query design per dataset mode

Import mode dataset queries

DirectQuery dataset queries

Data sources

Authentication

Data source settings

Privacy levels

Power BI as a data source
Power BI Desktop options

Global options

CURRENT FILE options

SQL views

SQL views versus M queries
SQL view examples

Date dimension view

Mark As Date Table

Product Dimension view

Slowly-changing dimensions

M queries

Data Source Parameters
Staging Queries

DirectQuery staging

Fact and dimension queries

Source Reference Only

M query summary

Excel workbook – Annual Sales Plan

Data types

Item access in M

DirectQuery report execution

Bridge Tables Queries

Parameter Tables

Security Tables

Query folding

Partial query folding

M Query examples

Trailing three years filter
Customer history column

Derived column data types

Product dimension integration

M editing tools

Advanced Editor

Visual Studio Code

Visual Studio

Summary

9. Designing Import and DirectQuery Data Models

Dataset layers

Dataset objectives

Competing objectives

External factors

The Data Model

The Relationships View

The Data View

The Report View

Fact tables

Fact table columns

Fact column data types

Fact-to-dimension relationships

Bridge tables
Parameter tables

Measure groups

Last refreshed date

Measure support logic

Relationships

Uniqueness

Ambiguity

Model metadata

Visibility
Column metadata

Default Summarization

Data format

Data category

Field descriptions

Optimizing performance

Import

Columnar compression

Memory analysis via DMVs

DirectQuery

Optimized DAX functions

Columnstore and HTAP

Summary

10. Developing DAX Measures and Security Roles

DAX measures

Measure evaluation process

Row context

Scalar and table functions
The CALCULATE() function

Related tables

The FILTER() function

DAX variables

Base measures

Measure support expressions

KPI Targets

Current and prior periods

Date intelligence metrics

Current versus prior and growth rates

Rolling periods

Dimension metrics

Missing dimensions

Ranking metrics

Dynamic ranking measures

Security roles

Dynamic row-level security

Performance testing

DAX Studio

Tracing a Power BI dataset via DAX Studio

Summary

11. Creating and Formatting Power BI Reports

Report planning

Power BI report architecture

Live connections to Power BI datasets

Customizing Live connection reports

Switching source datasets

Visualization best practices

Visualization anti-patterns

Choosing the visual

Tables versus charts

Chart selection

Visual interactions

Edit interactions

What-if parameters

Slicers

Slicer synchronization

Custom slicer parameters

Report filter scopes

Report filter conditions
Report and page filters

Page filter or slicer?

Relative date filtering

Visualization formatting

Visual-level formatting

Line and column charts
Tooltips

Report page tooltips

Column and line chart conditional formatting

Column chart conditional formatting

Line chart conditional formatting

Table and matrix

Table and matrix conditional formatting

Values as rows

Scatter charts

Map visuals

Bubble map

Filled map

Mobile-optimized reports

Responsive visuals

Report design summary

Summary

12. Applying Custom Visuals, Animation, and Analytics

Drillthrough report pages

Custom labels and the back button

Multi-column drillthrough

Bookmarks

Selection pane and the Spotlight property

Custom report navigation

View mode

ArcGIS Map visual for Power BI

ArcGIS Maps Plus subscriptions

Waterfall chart breakdown
Analytics pane

Trend Line

Forecast line

Quick Insights

Explain the increase/decrease

Custom visuals

Adding a custom visual

Power KPI visual

Chiclet Slicer

Impact Bubble Chart

Dot Plot by Maq Software

Animation and data storytelling

Play axis for scatter charts

Pulse Chart

Summary

13. Designing Power BI Dashboards and Architectures

Dashboards versus reports
Multi-dashboard architectures

Single-dashboard architecture

Multiple-dashboard architecture

Organizational dashboard architecture

Multiple datasets

Dashboard tiles

Tile details and custom links

Images and text boxes

SQL Server Reporting Services

Excel workbooks

Live report pages

Mobile-optimized dashboards

Summary

14. Managing Application Workspaces and Content

Application workspaces

Workspace roles and rights

Workspace admins

Workspace members

My Workspace

Staged deployments

Workspace datasets
Power BI REST API

Client application ID

Workspace and content IDs

PowerShell sample scripts

Dashboard data classifications
Version control

OneDrive for Business version history

Source control for M and DAX code

Metadata management

Field descriptions

Creating descriptions

View field descriptions

Metadata reporting

Query field descriptions
Standard metadata reports

Server and database parameters

Querying the DMVs from Power BI

Integrating and enhancing DMV data

Metadata report pages

Summary

15. Managing the On-Premises Data Gateway

On-premises data gateway planning

Top gateway planning tasks

Determining whether a gateway is neede

d

Identifying where the gateway should be ins

talled

Defining the gateway infrastructure and har

dware requirements

On-premises data gateway versus personal mode

Gateway clusters

Gateway architectures

Gateway security
Gateway configuration

The gateway service account

TCP versus HTTPS mode

Managing gateway clusters

Gateway administrators

Gateway data sources and users

PowerShell support for gateway clusters

Troubleshooting and monitoring gateways

Restoring, migrating, and taking over a gateway

Gateway log files

Performance Monitor counters

DirectQuery datasets

Single sign-on to DirectQuery sources via Kerberos

Live connections to Analysis Services models

Azure Analysis Services refresh

Dashboard cache refresh

Summary

16. Deploying the Power BI Report Server

Planning for the Power BI Report Server

Feature differences with the Power BI service

Parity with SQL Server Reporting Services

Data sources and connectivity options
Hardware and user licensing

Pro licenses for report authors

Alternative and hybrid deployment models

Report Server reference topology

Installation

Hardware and software requirements

Analysis Services Integrated

Retrieve the Report Server product key

Migrating from SQL Server Reporting Services

Configuration

Service Account

Remote Report Server Database

Office Online Server for Excel Workbooks

Upgrade cycles
Report Server Desktop Application

Running desktop versions side by side

Report Server Web Portal

Scheduled data refresh

Data source authentication

Power BI mobile applications
Report server administration

Securing Power BI report content

Execution logs

Scale Power BI Report Server

Summary

17. Creating Power BI Apps and Content Distribution

Content distribution methods
Power BI apps

Licensing apps

App deployment process

User permissions

Publishing apps

Installing apps

Apps on Power BI mobile

App updates

Dataset-to-workspace relationship

Self-Service BI workspace

Self-Service content distribution

Risks to Self-Service BI

Sharing dashboards and reports

Sharing scopes

Sharing versus Power BI apps

SharePoint Online embedding

Custom application embedding

Publish to web
Data alerts

Microsoft Flow integration

Email Subscriptions
Analyze in Excel

Power BI Publisher for Excel

Summary

18. Administering Power BI for an Organization

Data governance for Power BI

Implementing data governance

Azure Active Directory

Azure AD B2B collaboration

Licensing external users

Conditional access policies

Power BI Admin Portal

Usage metrics

Users and Audit logs

Tenant settings

Embed Codes

Organizational Custom visuals

Usage metrics reports
Audit logs

Audit log monitoring solutions

Audit logs solution template

Power BI Premium capacities

Capacity allocation
Create, size, and monitor capacities

Change capacity size

Monitor premium capacities

App workspace assignment

Capacity admins

Summary

19. Scaling with Premium and Analysis Services

Power BI Premium

Power BI Premium capabilities
Corporate Power BI datasets

Limitation of Corporate BI datasets –

; Reusability

Premium capacity nodes

Frontend versus backend resources

Power BI Premium capacity allocation

Corporate and Self-Service BI capacity
Power BI Premium resource utilization

Data model optimizations

Report and visualization optimizations

Premium capacity estimations
Analysis Services

Analysis Services Models versus Power BI Desktop

Scale

Usability

Development and management tools

Azure Analysis Services versus SSAS

SSAS to Azure AS Migration

Provision Azure Analysis Services

Migration of Power BI Desktop to Analysis Services

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
Microsoft Power BI Complete Reference gets you started with
business intelligence by showing you how to install the Power BI
toolset, design effective data models, and build basic dashboards
and visualizations that make your data come to life.

In this Learning Path, you will learn to create powerful
interactive reports by visualizing your data and learn
visualization styles, tips and tricks to bring your data to life. You
will be able to administer your organization's Power BI
environment to create and share dashboards. You will also be
able to streamline deployment by implementing security and
regular data refreshes.

Next, you will delve deeper into the nuances of Power BI and
handling projects. You will get you acquainted with planning a
Power BI project, development, and distribution of content, and
deployment. You will learn to connect and extract data from
various sources to create robust datasets, reports, and
dashboards. Additionally, you will learn how to format reports
and apply custom visuals, animation and analytics to further
refine your data.

By the end of this Learning Path, you will learn to implement the
various Power BI tools such as on-premises gateway together
along with staging and securely distributing content via apps.

This Learning Path is packaged up keeping your journey in
mind. The curator of this Learning Path has combined some of
the best that Packt has to offer in one complete package. It

includes content from the following Packt products:

Microsoft Power BI Quick Start Guide by Devin Knight et
al.

Mastering Microsoft Power BI by Brett Powell

Who this book is for
This Learning Path is for those who want to learn and use the
Power BI features to extract maximum information and make
intelligent decisions that boost their business. If you have a basic
understanding of BI concepts and want to learn how to apply
them using Microsoft Power BI, this Learning Path is for you. It
consists of real-world examples on Power BI and goes deep into
the technical issues, covers additional protocols, and much
more.

To get the most out of this book
A Power BI Pro license and access to the Power BI service is
necessary to follow many of the topics and examples in this book.
The assignment of the Power BI Service Administrator role
within the Office 365 admin center, as well as administrative
access to an On-premises data gateway, would also be helpful for
the second half of this book. It's assumed that readers are
familiar with the main user interfaces of Power BI Desktop and
have some background in business intelligence or information
technology.

The primary data source for the examples in this book was
the AdventureWorks data warehouse sample database for SQL
Server 2016 CTP3. A SQL Server 2017 Developer Edition
database engine instance was used to host the sample database.
For the import mode dataset, an Excel workbook stored the sales
plan data. For the DirectQuery dataset, the sales plan data was
stored in the sample SQL Server database.

The AdventureWorksDW2016CTP3 sample database can be downloaded
from the following URL:
https://www.microsoft.com/en-us/download/details.aspx?id=49502.

Editions of SQL Server 2017 are available for download from the
following URL:
https://www.microsoft.com/en-us/sql-server/sql-server-downloads.

The Power BI Desktop files and specific queries and scripts
utilized in the book are included in the code bundle. However,
the source data and database are not included in the code

https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/sql-server/sql-server-downloads

bundle. Additionally, the database used by the book contains
objects not included in the downloadable sample database, such
as SQL views for each fact and dimension table. Therefore, even
with access to a SQL Server 2017 database engine instance and
the sample AdventureWorks data warehouse database, the
examples in the book cannot be completely reproduced.

Download the example code
files
You can download the example code files for this book from your
account at www.packtpub.com. If you purchased this book elsewhere,
you can visit www.packtpub.com/support and register to have the files
emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow

the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

WinRAR/7-Zip for Windows

Zipeg/iZip/UnRarX for Mac

7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://g
ithub.com/PacktPublishing/Learning-Path-Microsoft-Power-BI-Complete-
Reference. In case there's an update to the code, it will be updated

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Path-Microsoft-Power-BI-Complete-Reference

on the existing GitHub repository.

We also have other code bundles from our rich catalog of books
and videos available at https://github.com/PacktPublishing/. Check them
out!

https://github.com/PacktPublishing/

Conventions used
There are a number of text conventions used throughout this
book.

CodeInText: Indicates code words in text, database table names,
folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles. Here is an example: "This
function is used by the Web Data Connector (WDC) (Get
Data | Web) to return the contents of an HTML web page as a
table, as shown in the following M Query:"

A block of code is set as follows:

// Retrieve table of data access M functions and their descriptions
let
 Source = Web.Page(Web.Contents("https://msdn.microsoft.com/en-US/library/mt296615.aspx")),
 PageToTable = Source{0}[Data],
 ChangedType = Table.TransformColumnTypes(PageToTable,
 {{"Function", type text}, {"Description", type text}})
in
 ChangedType

Bold: Indicates a new term, an important word, or words that
you see onscreen. For example, words in menus or dialog boxes
appear in the text like this. Here is an example: "The Data
Gateway item from the download menu in the preceding image
currently links to a Power BI Gateway page with a
large Download Gateway button at the top."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the
book title in the subject of your message. If you have questions
about any aspect of this book, please email us at
questions@packtpub.com.

Errata: Although we have taken every care to ensure the
accuracy of our content, mistakes do happen. If you have found a
mistake in this book, we would be grateful if you would report
this to us. Please visit www.packtpub.com/submit-errata, selecting your
book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any
form on the Internet, we would be grateful if you would provide
us with the location address or website name. Please contact us
at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a
topic that you have expertise in and you are interested in either
writing or contributing to a book, please visit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book,
why not leave a review on the site that you purchased it from?
Potential readers can then see and use your unbiased opinion to
make purchase decisions, we at Packt can understand what you
think about our products, and our authors can see your feedback
on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Getting Started with Importing
Data Options
Power BI may very well be one of the most aptly named tools
ever developed by Microsoft, giving analysts and developers a
powerful business intelligence and analytics playground while
still packaging it in a surprisingly lightweight application. Using
Microsoft Power BI, the processes of data discovery, data
modeling, data visualization, and sharing are made elegantly
simple using a single product. These processes are so
commonplace when developing Power BI solutions that this
book has adopted sections that follow this pattern. However,
from your perspective, the really exciting thing may be that
development problems that would previously take you weeks to
solve in a corporate BI solution can now be accomplished in only
hours.

Power BI is a Software as a Service (SaaS) offering in the
Azure cloud, and, as such, the Microsoft product team follows a
strategy of cloud first as they develop and add new features to
the product. However, this does not mean that Power BI is only
available in the cloud. Microsoft presents two options for sharing
your results with others. The first, most often-utilized method is
the cloud-hosted Power BI Service, which is available to users for
a low monthly subscription fee. The second option is the on-
premises Power BI Report Server, which can be obtained
through either your SQL Server licensing with Software
Assurance or a subscription level known as Power BI Premium.
Both solutions require a development tool called Power BI
Desktop, which is available for free, and is where you must start
to design your solutions.

Using the Power BI Desktop application enables you to define
your data discovery and data preparation steps, organize your
data model, and design engaging data visualizations on your
reports. In this first chapter, the development environment will
be introduced, and the data discovery process will be explored in
depth. The topics detailed in this chapter include the following:

Getting started

Importing data

Direct query

Live Connection

Getting started
The Power BI Desktop is available free and can be found via a
direct download link at Power BI(https://powerbi.microsoft.com/), or
by installing it as an app from Windows Store. There are several
benefits in using the Windows Store Power BI app, including
automatic updates, no requirement for admin privileges, and
making it easier for planned IT roll-out of Power BI.

If you are using the on-premises Power BI Report Server for your
deployment strategy, then you must download a different Power BI
Desktop, which is available by clicking the advanced download options
at https://powerbi.microsoft.com/en-us/report-server/. A separate install is required
because updates are released more often to Power BI in the cloud. This
book will be written primarily under the assumption that the reader is
using the cloud-hosted Power BI Service as their deployment strategy.

Once you download, install, and launch the Power BI Desktop,
you will likely be welcomed by the Start screen, which is
designed to help new users find their way. Close this start screen
so we can review some of the most commonly used features of
the application:

https://powerbi.microsoft.com/
https://powerbi.microsoft.com/en-us/report-server/

Power BI Desktop

Following the numbered figures, let's learn the names and
purposes of some of the most important features in the Power BI
Desktop:

Get Data: Used for selecting and configuring data
sources.

Edit Queries: Launches the Power Query Editor, which
is used for applying data transformations to incoming
data.

Report View: The report canvas used for designing data
visualizations. This is the default view open when the
Power BI Desktop is launched.

Data View: Provides a view of the data in your model.
This looks similar to a typical Excel spreadsheet, but it is
read-only.

Relationship View: Primarily used when your data
model has multiple tables and relationships need to be
defined between them.

Importing data
Power BI is best known for the impressive data visualizations
and dashboard capabilities it has. However, before you can
begin building reports, you first need to connect to the necessary
data sources. Within the Power BI Desktop, a developer has
more than 80 unique data connectors to choose from, ranging
from traditional file types, database engines, big data solutions,
cloud sources, data stored on a web page, and other SaaS
providers. This book will not cover all 80 connectors that are
available, but it will highlight some of the most popular.

When establishing a connection to a data source, you may be
presented with one of three different options on how your data
should be treated: Import, DirectQuery, or Live Connection. This
section will focus specifically on the Import option.

Choosing to import data, which is the most common option, and
default behavior, means that Power BI will physically extract
rows of data from the selected source and store it in an in-
memory storage engine within Power BI. The Power BI Desktop
uses a special method for storing data, known as xVelocity,
which is an in-memory technology that not only increases the
performance of your query results but can also highly compress
the amount of space taken up by your Power BI solution. In some
cases, the compression that takes place can even lower the disk
space required up to one-tenth of the original data source size.
The xVelocity engine uses a local unseen instance of SQL
Server Analysis Services (SSAS) to provide these in-memory
capabilities.

There are consequences to using the import option within Power
BI that you should also consider. These consequences will be
discussed later in this chapter, but as you read on, consider the
following:

How does data that has been imported into Power BI get
updated?

What if I need a dashboard to show near real-time
analytics?

How much data can really be imported into an in-
memory storage system?

Excel as a source
Believe it or not, Excel continues to be the most popular
application in the world and as such, you should expect that at
some point you will be using it as a data source:

1. To get started, open the Power BI Desktop and close the
start-up screen if it automatically appears.

2. Under the Home ribbon, you will find that Get Data
button, which you already learned is used for selecting
and configuring data sources. Selecting the down arrow
next to the button will show you the most common
connectors, but selecting the center of the button will
launch the full list of all available connectors. Regardless
of which way you select the button, you will find Excel at
the top of both lists.

3. Navigate to and open the file called AdventureWorksDW.xlsx
from the book resources. This will launch the Navigator
dialog, which is used for selecting the objects in the Excel
workbook you desire to take data from:

4. In this example, you see six separate spreadsheets you
can choose from. Clicking once on the spreadsheet name
will give you a preview of the data it stores, while clicking
the checkbox next to the name will include it as part of
the data import. For this example, select the checkboxes
next to all of the available objects, then notice the options
available in the bottom right.

5. Selecting Load will immediately take the data from the
selected spreadsheets and import them as separate tables
in your Power BI data model. Choosing Edit will launch
an entirely new window called the Power Query Editor
that allows you to apply business rules or transforms to
your prior to importing it. You will learn much more
about the Power Query Editor in Chapter 2, Data
Transformation Strategies. Since you will learn more
about this later, simply select Load to end this example.

Another topic you will learn more about in Chapter 6, Using a
Cloud Deployment with the Power BI Service, is the concept of
data refreshes. This is important because, when you import data
into Power BI, that data remains static until another refresh is
initiated. This refresh can either be initiated manually or set on a
schedule. This also requires the installation of a Data Gateway,
the application in charge of securely pushing data into the Power
BI Service. Feel free to skip to Chapter 6, Using a Cloud
Deployment with the Power BI Service, if configuring a data
refresh is a subject you need to know now.

SQL Server as a source
Another common source designed for relational databases is
Microsoft SQL Server:

1. To connect to SQL Server, select the Get Data button
again, but this time choose SQL Server. Here, you must
provide the server, but the database is optional and can
be selected later:

2. For the first time, you are asked to choose the type of
Data Connectivity mode you would like. As mentioned
previously, Import is the default mode, but you can
optionally select DirectQuery. DirectQuery will be

discussed in greater detail later in this chapter.
Expanding the Advanced options provides a way to insert
a SQL statement that may be used as your source. For the
following example, in the server is the only one property
populated before clicking OK:

3. Next, you will be prompted to provide the credentials you
are using to connect to the database server you provided
on the previous screen.

4. Click Connect after providing the proper credentials to
launch the same Navigator dialog that you may
remember from when you connected to Excel. Here, you
will select the tables, views, or functions within your SQL
Server database that you desire to import into your Power
BI solution. Once again, the final step in this dialog
allows you to choose to either Load or Edit the results.

Web as a source
One pleasant surprise to many Power BI Developers is the
availability of a web connector. Using this connection type allows
you to source data from files that are stored on a website or even
data that has been embedded into an HTML table on the web
page. Using this type of connector can often be helpful when you
would like to supplement your internal corporate data sources
with information that can be publicly found on the internet.

For this example, imagine you are working for a major
automobile manufacturer in the United States. You have already
designed a Power BI solution using data internally available
within your organization that shows historical patterns in sales
trends. However, you would like to determine whether there are
any correlations in periods of historically higher fuel prices and
lower automobile sales. Fortunately, you found that the United
States Department of Labor publicly posts historical average
consumer prices of many commonly purchased items, including
fuel prices.

1. Now that you understand the scenario within the Power
BI Desktop, select the Get Data button and choose Web
as your source. You will then be prompted to provide the
URL where the data can be found. In this example, the
data can be found by searching on the website Data.Gov (
https://www.data.gov/) or, to save you some time, use the
direct link: https://download.bls.gov/pub/time.series/ap/ap.data.2.Ga
soline. Once you provide the URL, click OK:

https://www.data.gov/
https://www.data.gov/
https://download.bls.gov/pub/time.series/ap/ap.data.2.Gasoline

2. Next, you will likely be prompted with an Access Web
Content dialog box. This is important when you are using
a data source that requires a login to access. Since this
data source does not require a login to find the data, you
can simply select anonymous access, which is the default,
and then click Connect:

Notice on the next screen that the Power BI Desktop recognizes
the URL provided as a tab-delimited file that can now easily be
added to any existing data model you have designed.

DirectQuery
Many of you have likely been trying to envision how you may
implement these data imports in your environment. You may ask
yourself questions such as the following:

If data imported into Power BI uses an in-memory
technology, did my company provide me a machine that
has enough memory to handle this?

Am I really going to import my source table with tens of
billions of rows into memory?

How do I handle a requirement of displaying results in
real time from the source?

These are all excellent questions that would have many negative
answers if the only way to connect to your data was by importing
your source into Power BI. Fortunately, there is another way.
Using DirectQuery, Power BI allows you to connect directly to a
data source so that no data is imported or copied into the Power
BI Desktop.

Why is this a good thing? Consider the questions that were asked
at the beginning of this section. Since no data is imported to the
Power BI Desktop, that means it is less important how powerful
your personal laptop is because all query results are now
processed on the source server instead of your laptop. It also
means that there is no need to refresh the results in Power BI
because any reports you design are always pointing to a live

version of the data source. That's a huge benefit!

Enabling this feature can be done by simply selecting
DirectQuery during the configuration of a data source. The
following screenshot shows a connection to an SQL Server
database with the DirectQuery option selected:

Earlier in this chapter, the Data Gateway application was
mentioned as a requirement to schedule data refreshes for
sources that used the import option. This same application is
also needed with DirectQuery if your data is an on-premises
source. Even though there is no scheduled data refresh, the Data
Gateway is still required to push on-premises data into the cloud.
Again, this will be discussed in more depth in Chapter 6, Using a
Cloud Deployment with the Power BI Service.

Limitations
So, if DirectQuery is so great, why not choose it every time? Well,
with every great feature you will also find limitations. The first
glaring limitation is that not all data sources support
DirectQuery. As of the time this book was written, the following
data sources support DirectQuery in Power BI:

Amazon Redshift

Azure HDInsight Spark

Azure SQL Database

Azure SQL Data Warehouse

Google BigQuery

IBM Netezza

Impala (Version 2.x)

Oracle Database (Version 12 and above)

SAP Business Warehouse Application Server

SAP Business Warehouse Message Server

SAP HANA

Snowflake

Spark (Version 0.9 and above)

SQL Server

Teradata Database

Vertica

Depending on the data source you choose, there is a chance of
slower query performance when using DirectQuery compared to
the default data import option. Keep in mind that when the
import option is selected it leverages a highly sophisticated in-
memory storage engine. When selecting DirectQuery,
performance will depend on the source type you have chosen
from the list above.

Another limitation worth noting is that not all Power BI features
are supported when you choose DirectQuery. For example,
depending on the selected source, some the Power Query Editor
features are disabled and could result in the following message:
This step results in a query that is not supported in DirectQuery
mode. Another example is that some DAX functions are
unavailable when using DirectQuery. For instance, several Time
Intelligence functions such as TotalYTD would generate the
following type error when using DirectQuery:

The reason for this limitation is because DirectQuery
automatically attempts to convert DAX functions such as this
one to a query in the data source's native language. So, if the
source of this solution was SQL Server, then Power BI would

attempt to convert this DAX function into a comparable T-SQL
script. Once Power BI realizes the DAX function used is not
compatible with the source, the error is generated.

You can turn on functions that DirectQuery blocks by going to File |
Options and settings | Options | DirectQuery | Allow restricted measures
in DirectQuery Mode. When this option is selected, any DAX expressions
that are valid for a measure can be used. However, you should know that
selecting this can result in very slow query performance when these
blocked functions are used.

Live Connection
The basic concept of Live Connection is very similar to that of
DirectQuery. Just like DirectQuery, when you use a Live
Connection no data is actually imported into Power BI. Instead,
your solution points directly to the underlying data source and
leverages Power BI Desktop simply as a data visualization
tool. So, if these two things are so similar, then why give them
different names? The answer is because even though the basic
concept is the same, DirectQuery and Live Connection vary
greatly.

One difference that should quickly be noticeable is the query
performance experience. It was mentioned in the last section
that DirectQuery can often have poor performance depending on
the data source type. With Live Connection, you generally will
not have any performance problem because it is only supported
by the following types of data sources:

SQL Server Analysis Services Tabular

SQL Server Analysis Services Multidimensional

Power BI Service

The reason performance does not suffer from these data sources
is because they either use the same xVelocity engine that Power
BI does, or another high-performance storage engine. To set up
your own Live Connection to one of these sources, you can
choose the SQL Server Analysis Services database from the list of
sources after selecting Get Data. Here, you can specify that the

connection should be live:

If a dataset is configured for a Live Connection or DirectQuery, then you
can expect automatic refreshes to occur approximately every hour or
when interaction with the data occurs. You can manually adjust
the refresh frequency in the Scheduled cache refresh option in the Power
BI service.

Limitations
So far, this sounds great! You have now learned that you can
connect directly to your data sources, without importing data
into your model, and you won't have significant performance
consequences. Of course, these benefits don't come without
giving something up, so what are the limitations of a Live
Connection?

What you will encounter with Live Connections are limitations
that are generally a result of the fact that Analysis Services is an
Enterprise BI tool. Thus, if you are going to connect to it, then it
has probably already gone through significant data cleansing and
modeling by your IT team.

Modeling capabilities such as defining relationships are not
available because these would be designed in an Analysis
Services Model. Also, the Power Query Editor is not available at
all against a Live Connection source. While at times this may be
frustrating, it does make sense that it works this way because any
of the changes you may desire to make with relationships or in
the query editor should be done in Analysis Services, not Power
BI.

Which should I choose?
Now that you have learned about the three different ways to
connect to your data, you're left to wonder which option is best
for you. It's fair to say that the choice you make will really
depend on the requirements of each individual project you have.
To summarize, some of the considerations that were mentioned
in this chapter are listed in the following table:

Consideration Import
Data DirectQuery Live

Connection

Best performance X X

Best design
experience X

Best for keeping
data up-to-date X X

Data sources
availability X

Most scalable X X

Some of these items to consider may be more important than
others to you. So, to make this more personal, try using the
Decision Matrix file that is included with this book. In this file,
you can rank (from 1 to 10) the importance of each of these
considerations to help give you some guidance on which option
is best for you.

Since the Data Import option presents the most available
features, going forward, this book primarily uses this option. In C
hapter 2, Data Transformation Strategies, you will learn how to
implement data transformation strategies to ensure all the
necessary business rules are applied to your data.

Summary
Power BI provides users a variety of methods for connecting to
data sources with natively built-in data connectors. The
connector you choose for your solution will depend on where
your data is located. Once you connect to a data source, you can
decide on the type of query mode that best suits your needs.
Some connectors allow for zero latency in your results with the
options of Direct Query or Live Connection. In this chapter, you
learned about the benefits and disadvantages of each query
mode, and you were given a method for weighting these options
using a decision matrix. In the next chapter, you will learn more
about how data transformations may be applied to your data
import process so that incoming data will be properly cleansed.

Data Transformation Strategies
Within any BI project, it is essential that the data you are
working with has been properly scrubbed to make for accurate
results on your reports and dashboards. Applying data cleansing
business rules, also known as transforms, is the method for
correcting inaccurate or malformed data, but the process can
often be the most time-consuming part of any corporate BI
solution. However, the data transformation capabilities built into
Power BI are both very powerful and user-friendly. Using the
Power Query Editor, tasks that would typically be difficult or
time-consuming in an enterprise BI tool are as simple as right-
clicking on a column and selecting the appropriate transform for
the field. While interacting with the user interface in this editor,
a language called M is being written automatically for you
behind the scenes.

Through the course of this chapter, you will explore some of the
most common features of the Power Query Editor that make it so
highly regarded by its users. Since one sample dataset cannot
provide all the problems you will run into, you will be provided
several small disparate examples to show you what is possible.
This chapter will detail the following topics:

The Power Query Editor

Transform basics

Advanced data transformation options

Leveraging R

M formula language

The Power Query Editor
The Power Query Editor is the primary tool that you will utilize
for applying data transformations and cleansing processes to
your solution. This editor can be launched as part of establishing
a connection to your data, or by simply clicking Edit Queries on
the Home ribbon of the Power BI Desktop. When the Power
Query editor is opened, you will notice that it has its own
separate environment for you to work in. The environment
encapsulates a user-friendly method for working with all of the
queries that you will define. Before you dive deep into the
capabilities of the Power Query Editor, let's first start by doing
an overview of the key areas that are most important:

Power BI Desktop

Following the numbered figures, let's review some of the most
important features of the Power Query Editor:

New Source: This launches the same interface as the Get
Data button that you learned about in Chapter 1, Getting
Started with Importing Data Options.

Queries Pane: A list of all the queries that you have
connected to. From here, you can rename a query, disable
the load and refresh capabilities, and organize your
queries into groups.

Query Settings: Within this pane, you can rename the
query, but more importantly you can see and change the
list of steps, or transforms, that have been applied to your
query.

Advanced Editor: By launching the Advanced Editor, you
can see the M query that is automatically written for you
by the Power Query Editor.

Close & Apply: Choosing this option will close the Power
Query Editor and load the results into the data model.

Transform basics
Applying data transformations within the Power Query Editor
can be a surprisingly simple thing to do. However, there are few
things to consider as we begin this process. The first is that there
are multiple ways to solve a problem. As you work your way
through this book, the authors have tried to show you the fastest
and easiest methods of solving the problems that are presented,
but these solutions certainly will not be the only ways to reach
your goals.

The next thing you should understand is that every click you do
inside the Power Query Editor is automatically converted into a
formula language called M. Virtually all the basic transforms you
will ever need can be accomplished by simply interacting with
the Power Query Editor user interface, but for more complex
business problems there is a good chance you may have to at
least modify the M queries that are written for you by the editor.
You will learn more about M later in this chapter.

Finally, the last important consideration to understand is that all
transforms that are created within the editor are stored in the
Query Settings pane under a section called Applied Steps. Why is
this important to know? The Applied Steps section has many
features, but here are some of the most critical to know for now:

Deleting transforms: If you make a mistake and need
to undo a step, you can click the Delete button next to a
step.

Modifying transforms: This can be done with any step

that has a gear icon next to it.

Changing the order of transforms: If you realize
that it is better for one step to execute before another
one, you can change the order of how the steps are
executed.

Clicking on any step prior to the current one will allow
you to see how your query results would earlier in the
process.

With this understanding, you will now get hands-on with
applying several basic transforms inside the Power Query Editor.
The goal of these first sets of example is to get you comfortable
with the Power Query user interface before the more complex
use cases are covered.

Use First Row as Headers
Organizing column names or headers is often an important first
task when organizing your dataset. Providing relevant column
names makes many of the downstream processes, such as
building reports, much easier. Often, column headers are
automatically imported from your data source, but sometimes
you may be working with a more unique data source that makes
it difficult for Power BI to capture the column header
information. This walkthrough will show how to deal with such a
scenario:

1. Launch the Power BI Desktop, and click Get Data under
the Home ribbon.

2. Choose Excel, then navigate and select Open on the
Failed Bank List.xlsx file that is available in the book
source files.

3. In the Navigator window, select the table called Data, then
choose Edit. When the Power Query Editor launches, you
should notice that the column headers are not
automatically imported. In fact, the column headers are
in the first row of the data.

4. To push the column names that are in the first row of
data to the header section, select the transform called Use
First Row as Headers from the Home ribbon:

Remove Columns
Often, the data sources you will connect to will include many
columns that are not necessary for the solution you are
designing. It is important to remove these unnecessary columns
from your dataset because these unused columns needlessly take
up space inside your data model. There are several different
methods for removing columns in the Power Query Editor. This
example will show one of these methods using the same dataset
from the prior demonstration:

1. Multi-select (Ctrl + click) the column headers of the
columns you wish to keep as part of your solution. In this
scenario, select the columns Bank Name, City, ST, and
Closing Date.

2. With these four columns selected, right-click on any of
the selected columns and choose Remove Other Columns.
Once this transform is completed, you should be left with
only the columns you need:

Option to Remove Other Columns

Another popular method for removing columns is clicking the
Choose Columns button on the Home ribbon of the Power Query
Editor. This option provides a list of all the columns, and you can
choose the columns you wish to keep or exclude.

You can also select the columns you wish to remove; right-click on one of
the selected columns and click Remove. This seems like the more obvious
method. However, this option is not as user-friendly in the long run
because it does not provide an option to edit the transform in the Applied

Steps section like the first two methods allow.

Change type
Defining column data types properly early on in your data
scrubbing process can help to determine the type of values you
are working with. The Power Query Editor has various numeric,
text, and date-time data types for you to choose from. In our
current example, all of the data types were automatically
interpreted correctly by the Power Query Editor, but let's look at
where you could change this if necessary:

1. Locate the data type indicator on the column header to
the right of the column name

2. Click the data type icon, and a menu will open that allows
you to choose the new data type you desire:

Choosing the Datatype

Another method you can use for changing column data types is
to right-click on the column you wish to change, then select
Change Type and choose the new data type you desire.

If you want to change multiple column data types at once, you can multi-
select the necessary columns, then select the new data type from the Data
Type property under the Home ribbon.

Many of the transforms you will encounter in the future are
contextually based on the column data types you are working
with. For example, if you have a column that is a date then you
will be provided special transforms that can only be executed
against a date data type, such as extracting the month name from
a date column.

Add Column From Examples
One option that can make complex data transformations seem
simple is the feature called Add Column From Examples. Using
Add Column From Examples, you can provide the Power Query
Editor a sample of what you would like your data to look like,
and it can then automatically determine which transforms are
required to accomplish your goal. Continuing with the same
failed banks example, let's walk through a simple example of
how to use this feature:

1. Find and select the Add Column tab in the Power Query
Editor ribbon.

2. Select the Column From Example button and, if
prompted, choose From All Columns. This will launch a
new Add Column From Examples interface.

3. Our goal is to leverage this feature to combine the City and
ST columns together. In the first empty cell, type Chicago, IL
and then hit Enter. You should notice that below the text
you typed Power BI has automatically translated what
you typed into a transform that can be applied for every
row in the dataset.

4. Once you click OK, the transform is finalized and
automatically added to the overall M query that has been
built through the user interface:

Adding Columns from Examples
Sometimes, you may encounter scenarios where the Add Column From
Examples feature needs more than one example to properly translate
your example into an M query function that accomplishes your goal. If
this happens, simply provide additional examples of how you would like
the data to appear, and the Power Query Editor should adjust to account
for outliers.

Advanced data transformation
options
Now that you should be more comfortable working within the
Power Query Editor, let's take the next step in working with it.
Often, you will find the need to go beyond these basic transforms
when dealing with data that requires more care. In this section,
you will learn about some of the more common advanced
transforms that you may have a need for, which include
Conditional Columns, Fill down, Unpivot, Merge Queries, and
Append Queries.

Conditional Columns
Using the Power Query Conditional Columns functionality is a
great way to add new columns to your query that follow logical
if/then/else statements. This concept of if/then/else is common
across many programming languages, including Excel formulas.
Let's review a real-world scenario where you would be required
to do some data cleansing on a file before it can be used. In this
example, you will be provided a file of all the counties in the
United States, and you must create a new column that extracts
the state name from the county column and places it in its own
column:

1. Start by connecting to the FIPS_CountyName.txt file that is
found in the book files using the Text/CSV connector.

2. Launch the Power Query Editor, and start by changing
the data type of Column1 to Text. When you do this, you will
be prompted to replace an existing type conversion. You
can accept this by clicking Replace current.

3. Click the arrow next to the column header for Column2 and
uncheck United States from the list, then click OK.

4. Now, on Column2, filter out United States from the field to
remove this value from the column.

5. Remove the state abbreviation from Column2 by right-
clicking on the column header and selecting Split Column
| By Delimiter. Choose -- Custom -- for the delimiter type,
and type ,, then click OK:

6. Next, rename the column names Column1, Column2.1, and Column
2.2, to County Code, County Name, and State Abbreviation,
respectively.

7. To isolate the full state name into its own column, you
will need to implement a Conditional Column. Go to the
Add Column button in the ribbon and select Conditional
Column.

8. Change the New column name property to State Name and
implement the logic If State Abbreviation equals null
Then return County Name Else return null as shown in
the following screenshot. To return the value from
another column, you must select the icon below the text
Output, then choose Select a column. Once this is
complete, click OK:

This results in a new column called State Name, which has the fully
spelled-out state name only appearing on rows where the State
Abbreviation is null.

This is only setting the stage to fully scrub this dataset. To
complete the data cleansing process for this file, read on to the
next section. However, for the purposes of this example, you
have now learned how to leverage the capabilities of the
Conditional Column transform in the Power Query Editor.

Fill Down
Fill Down is a rather unique transform in how it operates. By
selecting Fill Down on a particular column, a value will replace
all Null values below it until another non-null appears. When
another non-null value is present, that value will then fill down
to all Null values. To examine this transform, you will pick up
from where you left off with the Conditional Column example in
the previous section.

1. Right-click on the State Name column header and select
Transform || Capitalize Each Word. This transform
should be self-explanatory.

2. Next, select the State Name column and, in the
Transform ribbon, select Fill || Down. This will take the
value in the State Name column and replace all non-
null values until there is another State Name value that it can
switch to. After performing this transform, scroll through
the results to ensure that the value of Alabama switches
to Alaska when appropriate.

3. To finish this example, filter out any Null values that
appear in the State Abbreviation column. The final result
should look like this:

In this example, you learned how you can use Fill Down to
replace all of the null values below a non-null value. You can also
use Fill Up to do the opposite, which would replace all the null
values above a non-null value.

Unpivot
The Unpivot transform is an incredibly powerful transform that
allows you to reorganize your dataset into a more structured
format for Business Intelligence. Let's discuss this by visualizing
a practical example to help understand the purpose of Unpivot.
Imagine you are provided a file that has the last three years of
population by US States, and looks like this:

The problem with data stored like this is you cannot very easily
answer simple questions. For example, how would you answer
questions like, What was the total population for all states in
the US in 2018 or What was the average state population in
2016? With the data stored in this format, simple reports are
made rather difficult to design. This is where the Unpivot
transform can be a lifesaver. Using Unpivot, you can change this
dataset into something more acceptable for a BI project, like
this:

Data stored in this format can now easily answer the questions
posed earlier. To accomplish this in other programming
languages can often require fairly complex logic, while the Power
Query Editor does it in just a few clicks.

There are three different methods for selecting the Unpivot
transform that you should be aware of, and include the following
options:

Unpivot Columns: Turns any selected columns
headers into row values and the data in those columns

into a corresponding row. With this selection, any new
columns that may get added to the data source
will automatically be included in the Unpivot transform.

Unpivot Other Columns: Turns all column headers
that are not selected into row values and the data in those
columns into a corresponding row. With this selection,
any new columns that may get added to the data source
will automatically be included in the Unpivot transform.

Unpivot Only Selected Columns: Turns any selected
columns headers into row values and the data in those
columns into a corresponding row. With this selection,
any new columns that may get added to the data
source will not be included in the Unpivot transform.

Let's walk through two examples of using the Unpivot transform
to show you a few of these methods, and provide an
understanding of how this complex problem can be solved with
little effort in Power BI.

1. Launch a new instance of the Power BI Desktop, and use
the Excel connector to import the workbook called Income
Per Person.xlsx found in the book source files. Once you
select this workbook, choose the spreadsheet called Data in
the Navigator window, and then select Edit to launch the
Power Query Editor.

2. Now, make the first row of data column headers by
selecting the transform called Use First Row as Headers
under the Home Ribbon.

3. Rename the column GDP per capita PPP, with projections
column to Country.

4. If you look closely at the column headers, you can tell
that most of the column names are actually years and the
values inside those columns are the income for those
years. This is not the ideal way to store this data because
it would be incredibly difficult to answer the question,
What is the average income per person for Belgium? To
make it easier to answer this type of question, right-click
on the Country column and select Unpivot Other
Columns.

5. Rename the columns Attribute and Value to Year and Income,
respectively.

6. To finish this first example, you should also rename this
query Income.

This first method walked you through what can often be the
fastest method for performing an Unpivot transform, which is by
using the Unpivot Other Columns option. In this next example,
you will learn how to use the Unpivot Columns method.

1. Remain in the Power Query Editor, and select New
Source from the Home Ribbon to use the Excel connector
to import the workbook called Total Population.xlsx found in
the book source files. Once you select this workbook,
choose the spreadsheet called Data in the Navigator
window, and then select OK.

2. Like the last example, you will again need to make the
first row of data column headers by selecting the
transform called Use First Row as Headers under the
Home Ribbon.

3. Then, rename the column Total population to Country.

4. This time, multi-select all the columns except Country,
then right-click on one of the selected columns and
choose Unpivot Columns. The easiest way to multi-select
these columns is to select the first column then hold Shift
before clicking the last column.

5. Rename the columns Attribute and Value to Year and
Population, respectively.

6. To finish this first example, you should also rename this
query Population.

In this section, you learned about two different methods for
performing an Unpivot. To complete the data cleansing process
on these two datasets, it's recommended that you continue
through the next section on Merging Queries.

Merging Queries
A common requirement when building BI solutions is the need
to join two tables together to form a new result that includes
some columns from both tables in a single query. Fortunately,
Power BI makes this task very simple with the Merge Queries
feature. Using this feature requires that you select two tables and
then determine which column or columns will be the basis of
how the two queries are merged. After determining the
appropriate columns for your join, you will select a join type. The
join types are listed here with the description that is provided
within the product.

Left Outer (all from first, matching from second)

Right Outer (all from second, matching from first)

Full Outer (all rows from both)

Inner (only matching rows)

Left Anti (rows only in first)

Right Anti (rows only in second)

Many of you may already be very familiar with these different join
terms from SQL programming you have learned in the past. However, if
these terms are all new to you I recommend reviewing Visualizing Merge
Join Types in Power BI, courtesy of Jason Thomas in the Power BI Data
Story Gallery: https://community.powerbi.com/t5/Data-Stories-Gallery/Visualizing-Merge-Join-Type
s-in-Power-BI/m-p/219906. This visual aid is a favorite of many users that are
new to these concepts.

To examine the Merge Queries option, you will pick up from

https://community.powerbi.com/t5/Data-Stories-Gallery/Visualizing-Merge-Join-Types-in-Power-BI/m-p/219906

where you left off with the Unpivot examples in the previous
section.

1. With the Population query selected, find and select
Merge Queries | Merge Queries as New under the Home
Ribbon.

2. In the Merge dialog box, select the Income query from
the dropdown selection in the middle of the screen.

3. Then, multi-select the Country and Year columns under
the Population query, and do the same under the Income
query. This defines which columns will be used to join the
two queries together. Ensure that the number indicators
next to the column headers match. If they don't, you
could accidentally attempt to join on the incorrect
columns.

4. Next, select Inner (only matching rows) for the Join
Kind. This join type will return rows only when the
columns you chose to join on exist in both queries. Before
you click OK, confirm that your screen looks like this:

5. Once you select OK, this will create a new query called
Merge1 that combines the results of the two queries. Go

ahead and rename this query Country Stats.
6. You will also notice that there is a column called Income

that has a value of Table for each row. This column is
actually representative for the entire Income query that you
joined to. To choose which columns you want from this
query, click the Expand button on the column header.
After clicking the Expand button, uncheck Country, Year, and
Use original column name as the prefix then click OK.

7. Rename the column called Income.1 to Income.
8. Finally, since you chose the option Merge Queries as New in

Step 1, you can disable the load option for the original
queries that you started with. To do this, right-click on
the Income query in the Queries pane and click Enable Load
to disable it. Do the same thing for the Population query.
Disabling these queries means that the only query that
will be loaded into your Power BI data model is the new
one, called Country Stats:

To begin using this dataset in a report, you would click Close &
Apply. You will learn more about building reports in Chapter 5,
Visualizing Data.

In this section, you learned how the Merge Queries option is
ideal for joining two queries together. In the next section, you
will learn how you could solve the problem of performing a
union of two or more queries.

Appending Queries
Occasionally, you will work with multiple datasets that need to
be appended to each other. Here's a scenario: you work for a
customer service department for a company that provides credit
to customers. You are regularly provided .csv and .xlsx files that
give summaries of customer complaints regarding credit cards
and student loans. You would like to be able to analyze both of
these data extracts at the same time but, unfortunately, the
credit card and student loan complaints are provided in two
separate files. In this example, you will learn how to solve this
problem by performing an append operation on these two
different files.

1. Launch a new instance of the Power BI Desktop, and use
the Excel connector to import the workbook called
Student Loan Complaints.xlsx found in the book source
files. Once you select this workbook, choose the
spreadsheet called Student Loan Complaints in the
Navigator window, and then select Edit to launch the
Power Query Editor.

2. Next, import the credit card data by selecting New Source
| Text/CSV, then choose the file called Credit Card
Complaints.csv found in the book source files. Click OK to
bring this data into the Power Query Editor.

3. With the Credit Card Complaints query selected, find and
select Append Queries | Append Queries as New under
the Home Ribbon.

4. Select Student Loan Complaints as the table to append to,
then select OK.

5. Rename the newly created query All Complaints.
6. Similar to the previous example, you would likely want to

disable the load option for the original queries that you
started with. To do this, right-click on the Student Load
Complaints query in the Queries pane, and click Enable
Load to disable it.

7. Do the same to the Credit Card Complaints query, and
then select Close & Apply.

Leveraging R
R is a very powerful scripting language that is primarily used for
advanced analytics tools, but also has several integration points
within Power BI. One such integration is the ability to apply
business rules to your data with the R language. Why is that
important? Well, with this capability you can extend beyond the
limits of the Power Query Editor and call functions and libraries
from R to do things that would not regularly be possible. In the
next two sections, you will explore how to set up your machine to
leverage R within Power BI and then walk through an example of
using an R Script transform.

There are many additional books and references you can read to learn
more about the R scripting language, but for the purposes of this book,
our goal is to inform you on what is possible when R and Power BI are
combined.

Installation and configuration
To use R within Power BI, you must first install an R distribution
for you to run and execute scripts against. In this book, we will
leverage Microsoft's distribution, Microsoft R Open. It is an open
source project and free for anyone to use. Once Microsoft R
Open has been installed, you can then configure Power BI to
recognize the home directory where R libraries may be installed.
Let's walk through these setup steps together:

1. Navigate to the website https://mran.microsoft.com/download/ to
download and install Microsoft R Open.

2. For the purposes of our example, you will select
Download next to Microsoft R Open for Windows.

3. Once the download has completed, run the installation
and accept all default settings and user agreements.

4. Next, launch a new instance of the Power BI Desktop to
set up the R integration with Power BI. Click the menu
options File | Options and settings | Options.

5. Choose the R scripting section and ensure that the
Detected R home directories property is filled with the R
instance you just installed:

https://mran.microsoft.com/download/

6. Once this is completed, click OK to begin using the
capabilities of R within Power BI.

The R Script transform
With the R distribution now installed and configured to integrate
with Power BI, you are now ready to see what's possible with
these new capabilities. In this example, you will be looking at
data from the European Stock Market. The problem with this
dataset, that must be corrected with R, is that the file provided to
you is missing values for certain days. So, to get a more accurate
reading of the stock market, you will use an R package called
MICE to impute the missing values:

1. Before beginning in Power BI you should ensure that the
MICE library is installed and available in the R Distribute
you installed in the last section. To do this, launch
Microsoft R Open from your device. This is the basic
RGui that was installed for you to run R scripts
with. Microsoft R Open may need to be run as
administrator. To do this right-click on the application
and select Run as administrator.

For many developers, the preferred method for writing R scripts is a free
open source tool called RStudio. RStudio includes a code editor,
debugging, and visualization tools that many find easier to work with.
You can download RStudio from https://www.rstudio.com/.

2. Type the following script in the R Console window, and
then hit Enter:

https://www.rstudio.com/

 install.packages("mice")

3. You can close the R Console and return to the Power BI
Desktop after it returns back package 'mice' successfully
unpacked and MD5 sums checked.

4. In the Power BI Desktop, start by connecting to the
required csv data source called EuStockMarkets_NA.csv from the
book source files. Once you connect to the file, click Edit
to launch the Power Query Editor.

5. You will notice that there are a few days that are missing
a SMI (Stock Market Index) value. The values that
show NA we would like to replace using an R script. Go
under the Transform ribbon, and select the Run R Script
button on the far right.

6. Use the following R script to call the MICE library that
you recently installed to detect what the missing values in
this dataset should be:

 # 'dataset' holds the input data for this script
 library(mice)
 tempData <- mice(dataset,m=1,maxit=50,meth='pmm',seed=100)

 completedData <- complete(tempData,1)
 output <- dataset
 output$completedValues <- completedData$"SMI missing values"

7. Click OK, and then click on the hyperlink for the table

next to the completedData row to see the result of the
newly implemented transform for detecting missing
values.

This new output has replaced the missing values with new values
that were detected based on the algorithm used within the R
script. To now build a set of report visuals on this example, you
can click Close & Apply under the Home ribbon.

This is just one simple way that R can be used with Power BI.
You should note that in addition to using R as a transform, it can
also be used as a data source and as a visual within Power BI.

M formula language
The Power Query Editor is the user interface that you have now
learned is used to design and build data imports. However, you
should also know that every transform you apply within this
editor is actually, quietly and behind the scenes, writing an M
query for you. The letter M here is a reference to the languages
data mashup capabilities.

For simple solutions, it is unlikely that you will ever need to even
look at the M query that is being written, but there are some more
complex cases where it's helpful to understand how to read and
write your own M. For the purposes of this book, covering just
the Power BI essentials, you will learn how to find the M query
editor within your solution and then understand how to read
what it is doing for you. For the purposes of this example, you
can open up any previously built example, however, the
screenshot used here is coming from the very first example in
this chapter on basic transforms.

1. Using any Power BI solution you have designed, launch
the Power Query Editor.

2. Under the Home Ribbon, select Advanced Editor to see
the M query that has been written by the user interface:

This query has been formatted to make it easier to read. Let's
review the key elements that are present here:

1. Let Expression: Encapsulates a set of values or named
expressions to be computed.

2. Named Expressions or Variables: The name given to
a set of operations in a step. These names can be
anything, but you should note that if you wish to have a
space in the name of a step then it must be surrounded by
#"". For example, If I wanted something to be called Step
1, then I would have to name an expression #"Step 1".

3. M Functions: The operations that are used to
manipulate the data source.

4. Prior Step Reference: The M Query language generally

executes its functions as serial operations, meaning each
operation is executed one after the other sequentially.
You can see this when you look at a query because each
call to an M function always references the prior-named
expression, to pick up where it left off.

5. In Expression: Oddly, the In expression is actually a
reference to what the query will output. Whichever name
expression is referenced in the In expression will be what
is returned back in the Power Query Editor preview.

It is important to realize that M is case-sensitive. That means if you ever
make a change to a query or write one from scratch, you should be
careful because there is a difference between "a" and "A".

#shared
As mentioned previously, this book will not dive deep into
writing your own M queries since that would be far beyond the
essentials of Power BI. However, there is a great method for
exploring the M functions that are available, and how to use
them. Within the Power Query editor, you can use the #shared
function to return back documentation on every available
function in the M library. Let's walk through how you can leverage
this tool:

1. In a new instance of the Power BI Desktop, select Get
Data and then choose Blank Query. This will launch the
Power Query Editor with an empty formula bar waiting
for you to provide your own M.

2. In this formula bar, type = #shared, then hit Enter.
Remember that M is case-sensitive so you must use a
lower case "s" when typing shared.

3. This will return a list of all the available M functions. By
selecting the cell that has the hyperlink text of function,
you can see documentation on how to use each function:

This is a great method for learning what M functions are available,
and how each may be used.

Summary
In this chapter, you learned that the Power Query Editor is an
extremely powerful tool for applying business rules to incoming
data. Implementing data cleansing techniques can be as simple
as right-clicking on a column, or more complex such as when
building a Conditional Column. While the Power Query Editor
does have a vast library of transforms available, you also learned
that you can tap into the capabilities of R to extend what's
possible when designing queries. Finally, this chapter also
helped you learn that the decisions you make while building your
queries can impact Query Folding, which can be incredibly
important for the performance of your queries.

Building the Data Model
In this chapter, you are now going to create a coherent and
intelligent data model by creating the necessary relationships to
bring those data sources together. The topics detailed in this
chapter are as follows:

Building relationships

Working with complex relationships

Usability enhancements

Self Service BI would not be possible without a functional data
model. Historically, BI projects focused on building data models
could take months and even years to develop when working
within the rigid structure and constraints of a corporate business
intelligence environment. Unfortunately, studies show that
about fifty percent of all BI projects fail, and that these projects
either do not complete or don't deliver on promised deliverables
at the completion of the project.

Fortunately, Power BI Desktop provides you with a much more
agile approach to building your data model, and instead of
months or years, you can now build your data model in hours or
days.

Building relationships
One could argue that the building of relationships is the most
important piece of Power BI Desktop. It is this process, the
building of relationships, that makes everything else work like
magic in Power BI. The automatic filtering of visuals and reports,
the ease in which you can author DAX measures, and the ability
to quickly connect disparate data sources are all made possible
through properly built relationships in the data model.

Sometimes, Power BI Desktop will create the relationships for
you automatically. It is important to verify these auto-detected
relationships to ensure accuracy.

There are a few characteristics of relationships that you should
be aware of, and that will be discussed in this section:

Auto-detected relationships

There may be only one active relationship between two
tables

There may be an unlimited number of in-active
relationships between two tables

Relationships may only be built on a single column, not
multiple columns

Relationships automatically filter from the one side of the
relationship to the many side

Relationships cannot be built directly between tables that
have a many-to-many relationship

Open up the .pbix file Chapter 3 - Building the Data Model.pbix found in
your class files.

Figure 1-pbix file___

Let's take a closer look at each of the four items highlighted in
the preceding screenshot:

1. Relationship: The line between two tables represents
that a relationship exists

2. Direction: The arrow indicates which direction that
filtering will occur

3. One side: The 1 indicates the Customer table as the one side
of the relationship

4. Many side: The * indicates that the FactInternetSales table
is the many side of the relationship

The first thing you should do after importing data is to verify
that all auto-detected relationships have been created
correctly. From the modeling ribbon, select Manage
Relationships:

Figure 2-Manage Relationships

This will open up the Manage Relationships editor. The
relationship editor is where you will go to create new
relationships and edit or delete existing relationships. In this
demo, the relationship editor will be used to verify the
relationships that were automatically created by Power BI
Desktop.

Let's take a look at the Manage Relationships editor, in which
you can manage or perform the following:

Current relationships in the data model

Create a new relationship

Edit existing relationships

Delete a relationship

Figure 3- Deleting a Relationship

First, you need to verify auto-detected relationships. The top half
of the relationship editor gives you a quick and easy way to see
what tables have relationships between them, what columns the

relationships have been created on, and if the relationship is an
active relationship. We will discuss active and inactive
relationships later in this chapter:

Figure 4-Active Relationshops

Take a look at Figure 4, You will see that there are currently
three relationships, and all three relationships are currently
active. The first relationship is the relationship between the
CustomerKey column in the FactInternetSales table and the CustomerKey
column in the DimCustomer table. This relationship was created
automatically by Power BI Desktop when the tables were
imported into the data model, and this is a valid relationship. In
fact, all three relationships are valid.

Editing relationships
Now, let's take a look at how to edit an existing relationship. In
this example, you will edit the relationship between
FactInternetSales and DimCustomer. To edit an existing
relationship, select that relationship and then click on Edit.... See
Figure 5, here:

Figure 5-Editing a relationship

Once you select Edit... you will receive a new dialog box; this is
the Edit Relationship editor. In this view, you will see how to
change an existing relationship, how to change a relationship to
active or inactive, and the cardinality of the current relationship;

this is also where you can change the cross filter direction:

Figure 6-Editing a relationship

There are five things we want to look at in the edit relationship

window:

1. This identifies the FactInternetSales table and the
column that the relationship was built on.

2. This identifies the DimCustomer table and the column that the
relationship was built on.

3. This checkbox identifies whether the relationship is
active or inactive.

4. This is the current cardinality between the two tables.
Here we see that there is a many-to-one relationship
between FactInternetSales and DimCustomer. Power BI does an
excellent job of identifying the correct cardinality, but it
is important to always verify that the cardinality is
correct.

5. The cross filter direction can be single or both. The one
side of a relationship always filters the many side of the
relationship, and this is the default behavior in Power BI.
The cross filter option allows you to change this behavior.
Cross filtering will be discussed later in this chapter.

If you need to change the relationship of an existing relationship,
then you would do that in the edit relationship editor seen in
Figure 6. To change the column that a relationship has been
created on, simply select a different column. It is important to
point out that a relationship between two tables may only be
created on a single column. Therefore, if you have a multiple

column key, also known as a composite key, then you would
need to first combine those keys into a single column before
creating your relationship. You saw how to combine columns in
the previous chapter.

Creating a new relationship
In the previous section, you saw how to verify existing
relationships, and even how to edit them. In this section, you are
going to learn how to create a new relationship. There are six
tables in the data model so far, and Power BI created a
relationship for all the tables, except for two. Let's start by
creating a relationship to the DimDate table.

The FactInternetSales table stores three different dates: OrderDate,
ShipDate, and DueDate. There can be only one active relationship
between two tables in Power BI, and all filtering occurs through
the active relationship. In other words, which date do you want
to see your total sales, profit, and profit margin calculations on?
If it's OrderDate, then your relationship will be on the OrderDate
column from the FactInternetSales table to the FullDateAlternateKey
column in the DimDate table. To create a new relationship, open
"manage relationships" from the home ribbon.

Now, let's create a relationship from the OrderDate column in
FactInternetSales to the FullDateAlternateKey column in DimDate. With the
manage relationship editor open, click on New... to create a new
relationship:

Figure 7- Creating a new relationship

Complete the following steps to create a new relationship:

1. Select FactInternetSales from the list of tables in the
dropdown

2. Select OrderDate from the list of columns, and use the scroll
bar to scroll all the way to the right

3. Select DimDate from the next in the drop-down list
4. Select FullDateAlternateKey from the list of columns

5. The cardinality, cross filter direction, and whether the
relationship is active or inactive is updated automatically
by Power BI; remember to always verify these items.

6. Click OK to close the editor

Congratulations, you have created your first relationship with
Power BI!

Working with complex
relationships
There are many complex scenarios that need to be addressed
when building a data model, and Power BI is no different in this
regard. In this section, you will learn how to handle many-to-
many relationships and role-playing tables in Power BI.

Many-to-many relationships
Once relationships have been defined in your data model,
filtering occurs automatically and this adds a tremendous
amount of value to Power BI. However, the analytical value
achieved through many-to-many relationships does not happen
automatically.

Before you can learn how to handle many-to-many relationships
in Power BI, you must first understand the basic behavior of
filtering. Let's take a minor detour to explain how filtering
works. Filtering will be discussed in more detail in the next
chapter. In Figure 8, the total SalesAmount of all transactions is
$29,358,677.22. The table visual you see in Figure 8 is simply
the sum of the column SalesAmount from the FactInternetSales
table:

Figure 8- SalesAmount

To view the total SalesAmount for all transactions broken down
by country, all you would need to do is simply add

the SalesTerritoryCountry column from the DimSalesTerritory
table. This behavior in Power BI is awesome, and this is
automatic filtering at work. Take a look at Figure 9:

Figure 9-Viewing total sales amount

Please note that this only works because a valid relationship
exists between the FactInternetSales and DimSalesTerritory
tables. If a relationship had not been created, or if the
relationship created was invalid, then you would get entirely
different results and they would be confusing. Let's take a look at
what would happen if no relationship had previously existed. In
Figure 10, the country has been removed and replaced with the
Temperature Range column from the 5 Regions 2008 table:

Figure 10-Replacing Country with Temperature range

Notice how the total sales amount is repeated for each
temperature range. This behavior indicates that the 5 Regions
2008 table is unable to filter the FactInternetSales table. This
inability to filter can happen for a number of different reasons,
and here are a few:

Because a relationship does not exist between the tables

Because an existing relationship is invalid

Because an existing relationship does not allow the
filtering to pass through an intermediate table

If you see the repeated value behavior demonstrated in Figure
10, then go back to the relationship view and verify that all
relationships have been created and are valid.

Cross-filtering direction
Now that you understand the basics of automatic filtering in
Power BI, let's take a look at an example of a many-to-many
relationship. DimProduct and DimCustomer have a many-to-
many relationship. A product can be sold to many customers.
For example, bread can be sold to Jessica, Kim, and Tyrone. A
customer can purchase many products. Kim could purchase
bread, milk, and cheese.

A bridge table can be used to store the relationship between two
tables that have a many-to-many relationship, just like tools you
have worked with in the past.

The relationship between DimProduct and DimCustomer is
stored in the FactInternetSales table. The FactInternetSales table
is a large many-to-many bridge table:

Figure 11-Relationship between DimCustomer and FactInternetSales

Figure 11 shows the relationship between these two tables; see
the following explanation for the numbered points:

1. The relationship between DimCustomer and
FactInternetSales

2. The relationship between DimProduct and
FactInternetSales

3. The cross filter direction is set to single

The following report displays the total sales, total transactions,
and customer count for each product:

 Figure 12- Customer Count for each product

Let's take a closer look at Figure 12, and note the numbered
points:

1. Product Name from the DimProduct table
2. Total Sales is the SUM of the Sales Amount column from

the FactInternetSales table
3. Total Transactions is the number of corresponding

transactions from the FactInternetSales table
4. Customer Count is the COUNT of the CustomerKey

column from the DimCustomer table

Total Sales and Total Transactions are returning the correct
results for each product. Customer Count is returning the same

value for all products (18,484). This is due to the way that
filtering works. The calculations for Total Sales and Total
Transactions are derived from columns or rows that come from
the FactInternetSales table. The Product table has a one-to-
many relationship with Internet Sales, and therefore filtering
occurs automatically. This explains why those two calculations
are being filtered properly, but it does not explain why the count
of customers is returning the same repeated value for all
products, not entirely anyway.

Let's take another look at the relationship between DimProduct
and DimCustomer. You will notice in the following image that
the relationship between these two tables flows through the
FactInternetSales table. This is because they have a many-to-
many relationship. In this scenario, the table FactInternetSales
is acting as a large many-to-many bridge table. DimProduct
filters FactInternet Sales. DimCustomer also filters
FactInternetSales, and FactInternetSales is currently unable to
filter the customer table:

Figure 13

The repeated value for customer count occurs because
FactInternetSales is unable to filter the DimCustomer table.
DimProduct filters FactInternetSales, and a list of transactions
are returned for each product. Unfortunately, the filtering does
not pass from FactInternetSales to DimCustomer. This is

because FactInternetSales is on the many side of the relationship
with DimCustomer. Therefore, when our calculation performs a
count on the customer key, the table is not filtered and the
calculation sees every customer key in the DimCustomer table
(18,484).

Do you remember the cross-filter direction property that was
briefly covered earlier in this chapter? That little property is
there to provide many-to-many support. By simply enabling
cross-filtering in both directions, the FactInternetSales table will
be able to filter the customer table and the customer count will
work.

Enabling filtering from the
many side of a relationship
 To enable cross-filtering, click on Manage Relationships from
the home ribbon; this will launch the manage relationship editor.
Find the relationship between FactInternetSales and
DimCustomer, and then click Edit.

Once the relationship editor has launched, change the cross-
filter direction from single to both:

Figure 14- Changing the Cross filter direction

Back in the report view, you will now see the correct customer
count for each product:

Figure 15-Customer Count for each product

Do not enable cross-filtering for your date table. In order for some DAX
calculations to work properly, the date table must have a contiguous
range of dates.

Role-playing tables
A role-playing table is a table that can play multiple roles, and
this helps to reduce data redundancy. Most often, the Date table
is a role-playing table. For example, the FactInternetSales table
has three dates to track the processing of an order. There is the
Order Date, Ship Date, and Due Date and, without role-playing
tables, you would need to have three separate date tables instead
of just one. The additional tables take up valuable resources,
such as memory, as well as add an extra layer of administrative
upkeep.

Each of these dates is very important to different people and
different departments within an organization. For example, the
finance department may wish to see total sales and profit by the
date that a product was purchased, the order date. However,
your shipping department may wish to see product quantity
based on the ship date. How do you accommodate requests from
different departments in a single data model?

One of the things I loved about working with SQL Server
Analysis Services Multidimensional was the ease with which it
handled role-playing tables; perhaps you also come from a
background where you have worked with tools that had built-in
support for Role-Playing tables. Unfortunately, Role-Playing
tables are not natively supported in Power BI; this is because all
filtering in Power BI occurs through the active relationship and
you can only have one active relationship between two tables.

There are generally two ways you can handle role-playing tables
in Power BI:

1. Importing the table multiple times and creating
individual active relationships.

2. Using DAX and inactive relationships to create
calculations that show calculations by different dates.

The first way, and the method we will show here, is importing
the table multiple times. Yes, this means that it will take up more
resources. The data model will have three date tables, one table
to support each date in the FactInternetSales table. Each date
table will have a single active relationship to the
FactInternetSales table.

Some of the benefits of importing the table multiple times are as
follows:

It is easier to train and acclimate end users with the data
model. For example, if you want to see sales and profit by
the ship date, then you would simply use the date
attributes from the ship date table in your reports.

Most, if not all, DAX measures will work across all date
tables, so no need for creating new measures.

The analytical value of putting different dates in a matrix.
For example, sales ordered and sales shipped by date.

Some of the cons of importing the table multiples times are:

Resources. Additional memory and space will be used.

Administrative changes. Any modifications made to one

table will need to be repeated for all tables, as these tables
are not linked. For example, if you create a hierarchy in
one table, then you would need to create a hierarchy in all
date tables.

The report in Figure 16 shows total sales and total transactions
by year, but which year? Is this the year that a product was
purchased or the year a product was shipped? The active
relationship is on order date, so the report is displaying the
results based on when the product was purchased:

Figure 16-Total sales and total transactions by year

Importing the date table
In this section, we are going to import a date table to support
analyzing data based on when an order shipped. From the get
data option, select excel and open the AdventureWorksDW excel file; the
file can be found in the directory location, C:\Packt\Power BI Quick
Start\Data\

Next, select DimDate from the list of tables, and then click load:

Figure 17- Select DimDate from the list of tables

Now that the data has been imported, the next step is creating a
valid relationship. Select Manage Relationships, found on the
home ribbon, to launch the relationship editor. Click new to
create a new relationship. Complete the following steps:

1. Select FactInternetSales from the drop-down list.
2. Select the ShipDate column; use the scroll bar to scroll all

the way to right.
3. Select DimDate (2) from the drop-down list.
4. Select the FullDateAlternateKey column.
5. Click OK to close the create relationship window.

I took the liberty of changing the table and column names here,
for clarity. You will learn how to rename tables and columns in
the following Usability enhancements section.

1. DimDate has been renamed Order Date.
2. DimDate (2) has been renamed Ship Date.

The data model now has two date tables, each with an active
relationship to the FactInternetSales table. If you wish to see
sales by order year then you would bring in the year column
from the Order Date table, and if you wish to see sales by the
ship year, then you would bring in the year column from the Ship
Date table:

Figure 18-Displaying ship year column

Importing the same table multiple times is generally the
preferred method when two tables have multiple relationships
between them. This method is easy to explain to end users and
allows you to reuse most, if not all, of your existing DAX
calculations.

The alternative method is to create inactive relationships and
then create new calculations (measures) using the Data Analysis
Expression (DAX) language. This method of leveraging inactive
relationships can become overwhelming from an administrative
point of view. Imagine having to create copies of the existing
measures in the data model for each relationship between two
tables. In the current data model, FactInternetSales stores three
dates, and this would possibly mean having to create and
maintain three copies of each measure, one to support each date.

Usability enhancements
Usability enhancements are those enhancements that can
significantly improve the overall user experience when
interacting with the data model. In order to ensure a successful
handoff and adoption of the work you have done, it is important
to not overlook these rather basic improvements.

In this section, we are going to cover the following usability
enhancements:

1. Hiding tables and columns
2. Renaming tables and columns
3. Changing the default summarization property
4. How to display one column but sort by another
5. Setting the data category of fields
6. How to create hierarchies

Hiding tables and columns
Some tables are available in the data model simply in a support
capacity, and would never be used in a report. For example, you
may have a table to support many-to-many relationships,
weighted allocation, or even dynamic security. Likewise, some
columns are necessary for creating relationships in the data
model but would not add any value when added to a
report. Tables or columns that will not be used for reporting
purposes should be hidden from the report view to reduce
complexity and improve the user experience.

To hide a column or table, simply right-click on the object you
wish to hide, and then select Hide in report view. If you are in
the report view already, the available option will simply say
Hide.

Navigate to the relationship view, find the FactInternetSales
table, and right-click on ProductKey, then select Hide in report
view:

Figure 19-Select Hide in report view

Columns that are hidden are still visible in the data and
relationship views, but they have slightly lighter text than
columns that are not hidden, as you can see in Figure 20:

Figure 20-Hidden Columns

Next, go to each table and hide all remaining key columns,
except for FullDateAlternateKey.

Renaming tables and columns
The renaming of tables and columns is an important step in
making your data model easy to use. Different departments often
have different terms for the same entity, therefore it is important
to consider multiple departments when renaming objects. For
example, you may have a column with a list of customer names
and you decide to name this column Customer. However, the
sales team may have named that column Prospect or Client, or
any number of other terms. Remember to keep your end users
and consumers of your reports in mind when renaming tables
and columns.

You may rename tables or columns in the report, data, or
relationship view. Navigate to the relationship view and right-
click on FactInternetSales, then select Rename:

Figure 21-Renaming FactInternetSales

Rename this table to Internet Sales. Now, rename the other
tables, removing the Dim prefix and adding spaces where

applicable. You can use the table here for reference:

FactInternetSales Internet Sales

DimDate Date (Order)

DimDate (2) Date (Ship

DimProduct Product

DimCustomer Customer

DimSalesTerritory Sales Territory

5 Regions 2008 Temperature

The next step is necessary, but could be a somewhat tedious
process. If you come from a programming or development
background, then you are used to eliminating spaces in table and
column names. End users and consumers of reports will expect
to see spaces and, for that reason, it is recommended to add
spaces where applicable. Spaces need to be added to any column
that is visible, not hidden, in the report view. To rename a
column, right-click on it and then select Rename. In the
following screenshot, spaces have been added to
SalesOrderNumber and SalesOrderLineNumber.

Complete the following steps to rename the rest of your columns:

1. Repeat this process of adding spaces for the remaining
columns in each table

2. Rename FullDateAlternateKey to simply Date:

Figure 22-Renaming columns in each table

Default summarization
By default, Power BI assigns a default summarization to numeric
columns, and this default summarization is usually a sum
operation. Columns that have been assigned a default
summarization are denoted by Power BI with a Sigma symbol
(∑). DateKey, Day Number of Week, Day Number of Month, Day
Number of Year, and Week Number of Year have all been
assigned a default summarization by Power BI in the following
screenshot:

Figure 23-Default assigned columns for summarization

This automatic assignment of default summarizations can cause
a lot of confusion to report developers in Power BI. Columns that
have a default summarization assigned will be automatically
aggregated with their assigned default summarization when
added to a report. The columns identified in Figure 23 are
generally descriptive attributes that help to explain the data;

these columns would rarely be aggregated. Take a look at the
following screenshot:

Figure 24-Year column from date table

In Figure 24, the Year column from the date table has been
added into a table visual, and the expected behavior is to see a
distinct list of years (2005, 2006, 2007, 2008, 2009, and 2010).
Instead, a value of 4,398,433 is returned. Instead of returning a
distinct list, the report returns a sum of all records from the year
column in the date table. See the screenshot and steps shown
next to adjust the default summarization:

Figure 25-Adjust the default summarization

The preceding screenshot walks through changing the default

summarization, with detailed steps listed here:

1. Select the report view from the left navigation bar.
2. Expand the date table and select Calendar Quarter,

highlighted by a yellow box.
3. Select the modeling ribbon.
4. Click the dropdown for Default Summarization, and

select Don't summarize.

Repeat the above process for each column in the date table that
has been assigned a default summarization by Power BI.

How to display one column but
sort by another
Oftentimes, you want to display the name of one column but sort
by another. For example, the month name is sorted
alphabetically when added to a report visual; see the following
screenshot as an example:

Figure 26-Month names sorted alphabetically when added to a report visual

The desired behavior is for the month to be sorted
chronologically instead. Therefore, the report should display the

month name but sort by the month number of year. Let's take a
look at how to change the sorting:

Figure 27-Changing the sort order of a column

In order to change the sort order of a column, complete the
following steps:

1. Select the report view from the left navigation bar.
2. Expand the date table and select English Month Name,

highlighted by a yellow box.
3. Select the modeling ribbon.

4. Click the dropdown for Sort by Column, and select Month
Number of Year.

Data categorization
Power BI makes some assumptions about your columns based
on data types, column names, and relationships in the data
model. These assumptions are used in the report view when
building visualizations to improve your default experience with
the tool. Once you start building visualizations, you will notice
that Power BI selects different types of visuals for different
columns; this is by design. Power BI also decides column
placement within the fields section of a visual, and you will learn
more about the creation of visuals in Chapter 5, Visualizing Data.
As you saw previously in this chapter, when Power BI detects a
column that has numeric values, a default aggregation is
assigned. Power BI assumes you will want to aggregate that data,
and will automatically place these numeric columns into the
Values area of a report visual.

The classification of data allows you to improve the user
experience as well as improve accuracy. There are quite a few
different options available for data categorization, thirteen in
fact. Take a look at the options available in the following
screenshot:

Figure 28-Options for data categorization

The most common use for data categorization is the
classification of geographical data. When geographical data is
added to a map, Bing maps may have to make some assumptions
about how to map that data. This can sometimes cause
inaccurate results. However, through data classification, you can
reduce and possibly eliminate inaccurate results.

One method I have found extremely useful is combining multiple address
columns (City, State) into a single column, and assigning the new
column a data categorization of "Place". I have used this method with
great success. See the following blog post for more tips on mapping
geographical data:
https://tinyurl.com/pbiqs-categoryplace.

https://tinyurl.com/pbiqs-categoryplace

Figure 29-Modifying the date category

Follow the steps here to modify the data category:

1. Select the report view from the left navigation bar.
2. Expand the Sales Territory table and select Sales

Territory Country, highlighted by a yellow box.
3. Select the modeling ribbon.
4. Click the dropdown for Data Category, and select

Country/Region.

Creating hierarchies
Predefining hierarchies can provide several key benefits. Some of
those benefits are listed here:

1. Hierarchies organize attributes and show relationships in
the data

2. Hierarchies allow for easy drag and drop interactivity
3. Hierarchies add significant analytical value to the

visualization layer through drilling down and rolling up
data, as necessary

Hierarchies store information about relationships in the data,
that users may not have otherwise known. I remember when I
was working for a client in the telecommunication industry and
they had Base Transceiver Stations (BTS) and Sectors, and
without looking at my notes, I could never remember the correct
order. Did a BTS contain multiple sectors, or did a sector contain
multiple base transceiver stations? Once the hierarchy was
added to the data model, I no longer had to worry about
remembering the relationship because the relationship was
stored in the hierarchy. Here is a list of common hierarchies:

1. Category | Subcategory | Product
2. Country | State | City
3. Year | Quarter | Month | Day

Hierarchies may only be created in either the report or data view.
In order to create a new hierarchy, complete the following steps:

1. Expand the Sales Territory table.
2. Right-click on the Sales Territory Country column.
3. Select New Hierarchy:

Figure 30-Create a new hierarchy

A new hierarchy has been created with a single column, and
given a default name of Sales Territory Country Hierarchy:

Figure 31-New hierarchy created

First, right-click on the Sales Territory Country Hierarchy and
rename it to Sales Territory Drilldown. The next step is to add
additional columns/attributes to the hierarchy. Complete the
following steps:

1. Right click on Sales Territory Region.
2. Click on Add to Hierarchy.
3. Select Sales Territory Drilldown.
4. Repeat steps 1-3 for Sales Territory Group:

Figure 32-Adding columns/attributes to the hierarchy

The completed hierarchy can be seen in the following screenshot.
However, the order of the attributes is incorrect; the order
should be Sales Territory Group | Sales Territory Country | Sales
Territory Region:

Figure 33-Completed hierarchy

To correct the order of the attributes:

1. Right-click on Sales Territory Group.
2. Click Move Up.
3. Repeat steps 1 and 2:

Figure 34-Correct the order of attributes

Summary
In this chapter, you learned how to build relationships between
the different tables within your data model. These relationships,
combined with simple, yet critical, usability enhancements, allow
you to build a data model that is both coherent and intelligent.
Historically, business intelligence projects cost significant
resources in terms of time and money. Through a self-service
approach to BI, you now have the tools necessary to build your
own BI project within hours or even minutes.

Leveraging DAX
Data analysis expressions (DAX) is a formula language that
made its debut back in 2010 with the release of Power Pivot
within Excel. Much of DAX is similar to Excel's functions, and
therefore learning DAX is an easy transition for Excel users and
power users. In fact, DAX is so similar to Excel that I have seen
new students become comfortable with the language and begin
writing DAX within minutes.

The goal of this chapter is to introduce you to DAX and give you
the confidence to start exploring this language on your own.
Because of the brevity of this chapter, there will not be
any discussions on in-depth DAX concepts and theory. There
are, of course, many other books that are dedicated to just that.

Now, let's take a look at what is covered in this chapter:

Building calculated columns

Calculated measures – the basics

Calculated measures – filter context

Calculated measures – time intelligence

Building calculated columns
Open the pbix file Chapter 4 – Leveraging DAX from the book files

Calculated columns are stored in the table in which they are
assigned, and the values are static until the data is refreshed. You
will learn more about refreshing data in a later chapter.

There are many use cases for calculated columns, but the two
most common are as follows:

Descriptive attributes

Concatenated key columns

Now you are going to create your first calculated column. Before
you get started, though, you need to first know that Power BI
Desktop has IntelliSense. IntelliSense will help you out a lot
when writing code, as you will discover very soon. This built-in
functionality will autocomplete your code as you go, and will also
help you explore and discover new functions in the DAX
language. In order to take advantage of IntelliSense, you simply
need to start typing in the formula bar. Now you are ready
to start writing DAX!

Click on the Data View—this is located on the left side of the
Power BI Desktop screen. Next, click on the customer table from
the Fields list. Once the customer table has been selected, click
New Column—this is found under the modeling ribbon, as
shown in the following screenshot:

Figure 1- New column

You will now see the text Column = in the formula bar. First,
name the new column by replacing the default text of Column
with Full Name. Then, move your cursor to after the equals sign
and type a single quote character. Immediately after typing the
single quote character, a list of autocomplete options will appear
preceding the formula bar. This is IntelliSense at work. The first
option in this list is the name of the table you currently have
selected—Customer. Click the Tab key and the name of the table
will automatically be added to the formula bar, as shown in the
following screenshot:

Figure 2-Adding name of the table
At some point, you will inevitably discover that you can reference just
the column name. As a best practice, we recommend always referencing
both the table and column name anytime you use a column in your DAX
code.

Next, type an opening square bracket into the formula bar
followed by a capital letter F, making [F. Once again, you will
immediately be presented with autocomplete options. The list of

options has been limited to only columns that contain the letter
f, and the first option available from the dropdown is First
Name. Click tab to autocomplete. The formula bar should now
contain the following formula:

Full Name = 'Customer'[First Name]

The next step is to add a space, followed by the last name. There
are two options in DAX for combining string values. The first
option is the concatenate function. Unfortunately, concatenate only
accepts two parameters; therefore, if you have more than two
parameters, your code will require multiple concatenate function
calls. On the other hand, you also have the option of using the
ampersand sign (&) to combine strings. The ampersand will first
take both input parameters and convert them into strings. After
this data conversion step, the two strings are then combined into
one. Let's continue with the rest of the expression. Remember to
use the built-in autocomplete functionality to help you write
code.

Next, add a space and the last name column. To add a space—or
any string literal value for that matter—into a DAX formula, you
will use quotes on both sides of the string. For example, "
" inserts a space between the first and last name columns. The
completed DAX formula will look like the following:

Full Name = 'Customer'[First Name] & " " & 'Customer'[Last Name]

String functions – Month, Year
Now that you have completed your first calculated column, let's
build a calculated column that stores the month–year value. The
goal is to return a month–year column with the two-digit month
and four-digit year separated by a dash, making "MM-YYYY".
Let's build this calculation incrementally.

Select the Date (order) table and then click New Column from
the modeling ribbon. Write the following code in the formula bar
and then hit Enter:

Month Year = 'Date (Order)'[Month Number of Year]

As you begin validating the code, you will notice that this only
returns the single-digit month with no leading zero. Your next
attempt may look something like the following:

Month Year = "0" & 'Date (Order)'[Month Number of Year]

This will work for single-digit months; however, double-digit
months will now return three digits. Take a look at the following
screenshot:

Figure 3-Displaying Month Year

To improve upon this and only return the two-digit month, you

can use the RIGHTfunction. The RIGHT function returns a specified
number of characters from the right side of a string. Modify your
existing DAX formula to look like the following:

Month Year = RIGHT("0" & 'Date (Order)'[Month Number of Year], 2)

For a full list of text functions in DAX, please go to the following link:
https://tinyurl.com/pbiqs-text

The rest of this formula can be completed quite easily. First, to
add a dash, the following DAX code can be used:

Month Year = RIGHT("0" & 'Date (Order)'[Month Number of Year], 2) & "-"

Complete the Month Year formula by combining the current
string with the calendar year column:

RIGHT("0" & 'Date (Order)'[Month Number of Year], 2) & "-" & 'Date
(Order)'[Year])

You may have noticed that the Year column has a data type of a whole
number, and you may have expected that this numeric value would need
to be converted to a string prior to the combine operation. However,
remember that the ampersand operator will automatically convert both
inputs into a string before performing the combine operation!

https://tinyurl.com/pbiqs-text

Format function – Month Year
As with any other language, you will find that there are usually
multiple ways to do something. Now you are going to learn how
to perform the calculation that we saw in the previous section
using the FORMAT function. The FORMAT function allows you
to take a number or date column and customize it in a number of
ways. A side effect of the FORMAT function is that the resulting
data type will be text. Let's perform the preceding calculation
again, but this time using the FORMAT function.

Make sure you have the Date (order) table selected, and then
click on Create a New Calculated Column by selecting New
Column from the modeling ribbon. In the formula bar, write the
following expression:

Month Year Format = FORMAT('Date (Order)'[Date], "MM-YYYY")

If you would like to take a full look at all the custom formatting options
available using the FORMAT function, please take a look at https://tinyurl.co
m/pbiqs-format.

https://tinyurl.com/pbiqs-format

Age calculation
Next, you are going to determine the age of each customer. The
Customer table currently contains a column with the birth date
for each customer. This column, along with the TODAY function
and some DAX, will allow you to determine each customer's age.
Your first attempt at this calculation may be to use the DATEDIFF
function in a calculation that looks something like the following:

Customer Age = DATEDIFF('Customer'[Birth Date],
TODAY(), YEAR)

The TODAY function returns the current date and time. The DATEDIFF
function returns the count of the specified interval between two
dates; however, it does not look at the day and month, and
therefore does not always return the correct age for each
customer.

Let's rewrite the previous DAX formula in a different way. In this
example, you are going to learn how to use conditional logic and
the FORMAT function to return the proper customer age. Please keep
in mind, that there are many ways to perform this calculation.

Select the Customer Age column from the previous step and
rewrite the formula to look like the following:

Figure 4-Select Customer age and rewrite the formula
Formatting code is very important for readability and maintaining code.
Power BI Desktop has a built-in functionality to help out with code
formatting. When you type Shift + Enter to navigate down to the next
line in your formula bar, your code will be indented automatically where
applicable.

When completed, the preceding code returns the correct age for
each customer. The FORMAT function is used to return the two-digit
month and two-digit day for each date (the birth date and today's
date). Following the logical test portion of the IF statement are
two expressions. The first expression is triggered if the logical
test evaluates to true, and the second expression is triggered if the
result of the test is false. Therefore, if the customer's month and
day combo is less than or equal to today's month and day, then
their birthday has already occurred this year, and the logical test
will evaluate to true, which will trigger the first expression. If the
customer's birthday has not yet occurred this year, then the
second expression will execute.

In the preceding DAX formula, I added comments by using two forward
slashes in the code. Comments are descriptive, and are not executed with
the rest of the DAX formula. Commenting code is always encouraged,
and will make your code more readable and easier to maintain.

SWITCH() – age breakdown
Now that you have the customer's age, it's time to put each
customer into an age bucket. For this example, there will be four
separate age buckets:

18-34

35-44

45-54

55 +

The SWITCH function is preferable to the IF function when
performing multiple logical tests in a single DAX formula. This is
because the SWITCH function is easier to read and makes debugging
code much easier.

With the Customer table selected, click New Column from the
modeling ribbon. Type in the completed DAX formula for the
following example:

Figure 5-Completed DAX formula

The preceding formula is very readable and understandable.
There are three logical tests, and if a customer age does not
evaluate to true on any of those logical tests, then that customer is
automatically put into the 18-34 age bucket.

The astute reader may have noticed that the second and third
logical tests do not have an upper range assigned. For example,
the second test simply checks whether the customer's age is 45 or
greater. Naturally, you may assume that a customer whose age is
75 would be incorrectly assigned to the 45–54 age bucket.
However, once a row evaluates to true, it is no longer available for
subsequent logical tests. Someone who is 75 would have
evaluated to true on the first logical test (55 +) and would no
longer be available for any further tests.

If you would like a better understanding of using the SWITCH statement instead of
nesting multiple IF statements, then you can check out a blog post by Rob Collie
at https://tinyurl.com/pbiqs-switch.

https://tinyurl.com/pbiqs-switch

Navigation functions – RELATED
It's finally time to create a relationship between the temperature
table and internet sales table. The key on the Temperature table
is a combination of the region name and the month number of
the year. This column combination makes a single row unique in
this table, as shown in the following screenshot:

Figure 6-Column combination that makes a single row unique

Unfortunately, neither of those two columns currently exist in
the Internet Sales table. However, the Internet Sales table has a
relationship to the Sales Territory table, and the Sales Territory
table has the region. Therefore, you can determine the region for
each sale by doing a simple lookup operation. Well, it should be
that simple, but it's not quite that easy. Let's take a look at why.

Calculated columns do not automatically use the existing
relationships in the data model. This is a unique characteristic of
calculated columns; calculated measures automatically see and
interact with all relationships in the data model. Now let's take a
look at why this is important.

In the following screenshot, I have created a new column on the
Internet Sales table and I am trying to return the region name
from the Sales Territory table. Take a look at the following

screenshot:

Figure 7-Sales Territory table

Note that there is no IntelliSense, and that the autocomplete
functionality is unavailable as I type in "Sales Territory". The
reason for this is because the calculated column cannot see the
existing relationships in the data model, and therefore does not
automatically return the column you want from another table.
There is a much more complicated explanation behind all this,
but for now, suffice to say that navigation functions (RELATED and
RELATEDTABLE) allow calculated columns to interact with and use
existing relationships.

If I rewrite the following DAX formula with the RELATED function,
then you will notice that IntelliSense has returned, along with
the autocomplete functionality that was previously discussed:

Figure 8-Temperature key column

Now it's time to create a Temperature Key column on the
Internet Sales table. Create a new column on the Internet Sales
table and then type in the following DAX formula:

Figure 9-Temperature Key column on the Internet Sales table

Now that the temperature key has been created on the Internet
Sales table, let's create the relationship. Click Manage
Relationships from the home ribbon and then click New... to
open the Create Relationship window. Then complete the
following steps to create a new relationship. The relevant fields
and entries for each step are marked out on the following
screenshot:

1. Select Internet Sales from the first drop-down selection
list

2. Select the Temperature Key from the list of columns
3. Select Temperature from the second drop-down selection

list (scroll right)
4. Select Key from the list of columns

5. Click OK to save your new relationship:

Figure 10-Creating new relationship

Calculated measures – the
basics
Calculated measures are very different than calculated columns.
Calculated measures are not static, and operate within the
current filter context of a report; therefore, calculated measures
are dynamic and ever-changing as the filter context changes. You
were introduced to filter context in the previous chapter. The
concept of the filter context will be slightly expanded on later in
this chapter. Calculated measures are powerful analytical tools,
and because of the automatic way that measures work with filter
contexts they are surprisingly simple to author.

Before you start learning about creating measures, let's first
discuss the difference between implicit and explicit measures.

Implicit aggregations occur automatically on columns with
numeric data types. You saw this in the previous chapter when
the year column was incorrectly aggregated after being added to
a report. There are some advantages to this default behavior—for
example, if you simply drag the Sales Amount column into a
report, the value will be automatically aggregated and you won't
have to spend time creating a measure. As discussed in the next
section, it's generally considered a best practice to create explicit
measures in lieu of implicit measures.

An explicit measure allows a user to create a calculated measure,
and there are several benefits to using explicit measures:

Measures can be built on each other

They encapsulate code, making logic changes less time-
consuming

They centrally define number formatting, creating
consistency

Calculated measures can do the following:

They can be assigned to any table

They interact with all the relationships in the data model
automatically, unlike calculated columns.

They are not materialized in a column, and therefore
cannot be validated in the Data View

Calculated measure – basic
aggregations
In this section, you are going to create four simple calculated
measures:

Total Sales

Total Cost

Profit

Profit Margin

Total Sales
To create your first measure, select the Internet Sales table and
then click New Measure... from the modeling ribbon. In the
formula bar, type the following code and hit Enter:

Total Sales = SUM('Internet Sales'[Sales Amount])

One of the benefits of creating explicit measures is the ability to
centralize formatting. Once the measure has been created,
navigate to the modeling ribbon and change the formatting to $
English (United States), as shown in the following
screenshot:

Figure 11-Change formatting to $ English(United States)

Total Cost
Now let's create the Total Cost measure. Once again, this is a
simple SUM operation. Click New Measure... from the modeling
ribbon and type in the following DAX formula:

Total Cost = SUM('Internet Sales'[Total Product Cost])

Remember to apply formatting to this new measure; it is easy to
miss this step when learning to create measures. The formatting
should be $ English (United States).

Profit
Profit is the next measure you will create. You may attempt to
write something such as the following:

Profit = SUM('Internet Sales'[Sales Amount]) - SUM('Internet Sales'[Total
Product Cost])

This calculation would be technically correct; however, it's not
the most efficient way to write code. In fact, another benefit of
building explicit measures is that they can be built on top of each
other.

Reusing existing calculated measures will make the code more
readable, and make code changes easier and less time
consuming. Imagine for a moment that you discovered that the
Total Sales calculation is not correct. If you encapsulated all this
logic in a single measure and reused that measure in your other
measures, then you need only change the original measure, and
any updates would be pushed to all other measures.

Now it's time to create the Profit measure. select your Internet
Sales table and then click on New Measure... from the modeling
ribbon. Type the following into the formula bar—remember to
format it:

Profit = [Total Sales] - [Total Cost]

This calculation returns the same results as the original attempt.
The difference is that now you are reusing measures that were
already created in the data model. You may have noticed that I
referenced the name of the measure without the table name.
When referencing explicit measures in your code, it is considered

a best practice to exclude the table name.

Profit Margin
Now it's time to create the Profit Margin calculation (the profit
margin is simply profit divided by sales). For this measure, you
are going to use the DIVIDE function. The DIVIDE function is
recommended over the divide operator (/) because the DIVIDE
function automatically handles divide by zero occurrences. In the
case of divide by zero occurrences, the DIVIDE function returns
blank.

Create a new measure on the Internet Sales table using the
following code:

Profit Margin = DIVIDE([Profit], [Total Sales])

Next, set the formatting as a percentage. From the modeling
ribbon, click on the % icon, as shown in the following screenshot:

Figure 12-Setting formatting as a percentage

Optional parameters
You may have noticed that the DIVIDE function accepted three
parameters and you only provided two. The third parameter
allows you to set an alternative result for divide by zero
occurrences. This alternate result is optional. Optional
parameters are denoted by square brackets on both sides of the
parameter. These optional parameters are prevalent in many
DAX functions. Take a look at the following screenshot:

Figure 13-Optional parameters in DAX functions

Filter context
The automatic filtering that occurs in Power BI is a really
awesome feature, and is one of the reasons that so many
companies are gravitating to this tool. Automatic filtering is
directly tied to the concept of the filter context. You were
introduced to the filter context in the previous chapter. I want to
briefly expand on the previous chapter here before discussing the
CALCULATE function.

A simple definition of the filter context would be that it is simply
anything in your report that is filtering a measure. There are
quite a few items that make up the filter context. Let's take a look
at a few of them:

Any attributes in the rows; this includes the different axes
in charts

Any attributes in the columns

Any filters applied by slicers (visual filters); slicers are
discussed in the next chapter

Any filters applied explicitly through the Filters pane

Any filters explicitly added to the calculated measure

Calculate
The CALCULATE function is an extremely powerful tool in the arsenal
of any DAX author. This is because the CALCULATE function can be
used to ignore, overwrite, or change the existing filter context.
You may be asking yourself why—why would anyone want to
ignore the default behavior of Power BI? Let's take a look at an
example.

Let's assume you want to return the total sales of each country as
a percentage of all countries. This is a very basic percent of total
calculation: Total Sales per country divided by Total Sales for all
countries. However, how do you get the total sales of all the
countries so that you can perform this calculation? This is where
the CALCULATE function comes into the picture. Take a look at the
following screenshot:

Figure14-Calculating total sales of all the countries

To do the percent of total calculation, you need to get Total Sales
all Countries on the same row as Total Sales. This means you

need to create a new calculated measure that ignores any filters
that come from the country attribute. Create a new calculated
measure on your Internet Sales table using the following DAX
formula:

Figure 15-Create a new calculated measure on Internet sales table using DAX formula

The preceding calculation will return all sales for all countries,
explicitly ignoring any filters that come from the Country
column. Let's briefly discuss why this works.

The first parameter of the CALCULATE function is an expression, and
you can think of this as an aggregation of some kind. In this
example, the aggregation is simply Total Sales. The second
parameter is a filter that allows the current filter context to be
modified in some way. In the preceding example, the filter
context is modified by ignoring any filters that come from the
country attribute. Let's take a look at the definition for the ALL
function used in the second parameter of the CALCULATE function:

ALL: Returns all the rows in a table, or all the values in a column,
ignoring any filters that may have been applied.

Percentage of total calculation
Now, create another calculated measure on the Internet Sales
table using the following code. Make sure that you format the
measure as a percentage:

% of All Countries = DIVIDE([Total Sales], [Total Sales all Countries])

In the following screenshot, you can see the completed example
with both of the new measures created in this section. Without a
basic understanding of the CALCULATE function, this type of percent
of total calculation would be nearly impossible:

Figure 16- Completed example with both of the new measures

Time intelligence
Another advantage of Power BI is how easily time intelligence
can be added to your data model. Within data analysis
expressions (DAX), you have a comprehensive list of built-in
time intelligence functions to make this very easy. In this section,
you are going to use these built-in functions to create the
following measures:

Year to Date Sales

Year to Date Sales (Fiscal Calendar)

Prior Year Sales

Built-in time intelligence calculations do not work if you are using a
direct query connection to your data source rather than importing data.
Take a look at the alternative methods for calculating time intelligence in
the DAX cheatsheet at https://tinyurl.com/pbiqs-daxcheatsheet.

https://tinyurl.com/pbiqs-daxcheatsheet

Year to Date Sales
Create a new calculated measure on your Internet Sales table
using the following DAX formula. Remember to format the
measure as $ English (United States):

YTD Sales = TOTALYTD([Total Sales], 'Date (Order)'[Date])

YTD Sales (Fiscal Calendar)
Maybe your requirement is slightly more complex, and you need
to see the year-to-date sales based on your fiscal year end rather
than the calendar year end date. The TOTALYTD function has an
optional parameter that allows you to change the default year
end date from "12/31" to a different date. Create a new calculated
measure on your Internet Sales table using the following DAX
formula:

Fiscal YTD Sales = TOTALYTD([Total Sales], 'Date (Order)'[Date], "03/31")

Now, let's take a look at both of these new measures in a table in
Power BI:

Figure 17-Both the new measure in a table

The newly created measures YTD Sales and Fiscal YTD Sales
have both been added to the preceding table. Let's take a closer
look at how these two measures are different; the relevant
sections in the table are annotated with the numbers one to four,
corresponding to the following notes:

1. The amount displayed for December 2005 is
$3,266,374. This is the cumulative total of all
sales from January 1, 2005 to December, 2005.

2. As expected, the cumulative total starts over as
the year switches from 2005 to 2006; therefore,
the YTD Sales amount for January 2006 is
$596,747.

3. In the Fiscal YTD Sales column, the cumulative
total works slightly differently. The displayed
amount of $5,058,072 is the cumulative total of
all sales from April 1st, 2005 to March 31, 2006.

4. Unlike the YTD Sales measure, the Fiscal YTD
Sales measure does not start over until April 1.
The amount displayed for April 2006 of $663,692
is the cumulative total for April. This number will
grow each month until May 31, at which point the
number will reset again.

Prior Year Sales
A lot of time series analysis consists of comparing current
metrics to the previous month or previous year. There are many
functions in DAX that work in conjunction with the CALCULATE
function to make these types of calculations easy. You are going
to create a new measure to return the total sales for the prior
year.

Create a new calculated measure on your Internet Sales table
using the following DAX formula:

Figure 18-Create a new calculated measure on your Internet sales

CALCULATE allows you to ignore or even change the current filter
context. In the preceding formula, CALCULATE is used to take the
current filter context and change it to one year ago. This
calculated measure also works at the day, month, quarter, and
year level of the hierarchy. For example, if you are looking at
sales for June 15, 2018, then the Prior Year Sales measure would
return sales for June 15, 2017. However, if you were simply
analyzing your sales aggregated at the month level for June
2018, then the measure would return the sales for June 2017.

For a comprehensive list of all the built-in time intelligence functions,
please take a look at https://tinyurl.com/pbiqs-timeintelligence.

https://tinyurl.com/pbiqs-timeintelligence
https://tinyurl.com/pbiqs-timeintelligence

Summary
In this chapter, you learned that DAX allows you to significantly
enhance your data model by improving the analytical capabilities
with a relatively small amount of code. You also learned how to
create calculated columns and measures and how to use DAX to
perform useful time series analysis on your data. This chapter
merely scratched the surface of what is possible with DAX. As
you further explore the DAX language on your own, you will
quickly become a proficient author of DAX formulas. As with
everyone who learns DAX, you will inevitably learn that there is
a layer of complexity to DAX that will require further education
to really master. When you get to this point, it would be
advantageous to look for classes or books that will help you to
truly master DAX!

Visualizing Data
Up to this point, you have spent some time importing data and
modeling it to your specifications. In this chapter, we will take
that hard work and begin to visualize the data in efficient and
effective ways. The most common association with Power BI for
consumers is the ability to create very impactful visualizations of
data, and there are many options available to do this. In this
chapter, we will look at all the various options that are available
to you within the Power BI Desktop application. Additionally, we
will take a brief glimpse at the additional visualization options
that are available through the Custom Visuals Marketplace. The
topics detailed in this chapter are as follows:

Data visualization basics

Visuals for filtering

Visualizing tabular data

Visualizing categorical data

Visualizing trend data

Visualizing KPI data

Visualizing geographical data

Leveraging Power BI custom visuals

Data visualization tips and tricks

At the time of this book's publication, there are 30 readily
available visuals in the Power BI Desktop application; this
includes the Shape map visual that is in the preview options. We
will be exploring most of them and how they best work with
certain types of data sets to bring the model we have worked on
until this point to life!

With Power BI's rapid update cycle, there will be many visuals added to
the application over time. If you would like to leverage these as soon as
they are available, you can find them in the Preview section of the
application's options. Figure 5-1 shows how to access the Preview
Features area. Once you have enabled something in this area, it usually
requires you to restart the Power BI application, so make sure to save
your work! The path is File||Options and Settings||Options||Preview Features.

How to turn on Preview Features can be seen here:

Figure 5-1

Data visualization basics
As soon as you launch the Power BI desktop application and
close out of the initial splash screen, you will find yourself in the
Report View, which is where we will stay for the duration of this
chapter. In the previous chapter, you explored the Relationship
view as well as the Data view, but these areas are not necessary
for the visualization work we will be doing. There are many items
of interest in this initial Report view area that we need to discuss
so that we can work efficiently. Let's open the completed Power
BI file from Chapter 4, Leveraging DAX, which includes all of the
calculated columns and calculated measures that we will use in
the upcoming visuals.

Let's review the key items from Figure 5-2:

For this chapter, you can build on top of the completed PBIX file from Chap
ter 4, Leveraging DAX. If you would like to keep your work from each
chapter separate, please follow the noted steps here. Open the completed
PBIX file called Chapter 5, Visualizing Data. Then, under the File option,
choose Save As and give this file a new name for the work we will be
doing in Chapter 5, Visualizing Data.

Figure 5-2

1. Report view: This is the button that will place us in the
Report canvas and allow us to create visuals.

2. Visuals area: This is where we can choose which visual,
we would like to use. Once custom visuals are added, they
will appear here as well.

3. Field area: This area will change depending on the
visual but it is where we place the fields we will use
within the selected visual.

4. Field pane: These are all the available fields we have to
choose from to add to our visuals.

5. Format area: Here is where we can decide on many
things specific to either the entire report page or the
selected visual, such as text size, font style, titles, and so
on.

6. Filters area: This is where we can apply filters of
various scopes:

1. Page-level filters: Any filters applied here will
affect every single visual on the selected page.

2. Drillthrough filters: This option allows users
to pass a filter value from a different report page
to this one. This will be discussed in further detail.

3. Report-level filters: Filters applied here will
affect every single visual for the entire Power BI
report.

4. Visual-level filters: This category will only
appear when you have a visual selected, and the
applied filters will only affect the selected visual.

7. Custom visuals: By selecting this button, you will have
a menu appear that has access to all the custom visuals
from the Microsoft store. You can then add whichever
visual you would like to the Visuals area.

8. Report page: Here is where you can select which report
page you would like to work with. Each page has a limited
work area where we can use visuals, so it is common to
have more than one page in a Power BI report.

9. Add Report page: By selecting this symbol, you can
add a new report page to add more area in which we can
add visuals.

It is important to note that when working with Visual level
filters, the Fields area, and the Format area, you must have the
specific visual selected. You can verify this when you see the
various anchor points around the visual in question. Now that we
have familiarized ourselves with the Report page features and
layout, its time to start visualizing!

Visuals for filtering
Filtering the data that users will see within a Power BI report is
the most effective way to answer very specific questions about
that data, and there are many ways to accomplish this. One of
Power BI's best features is its default capability to allow users to
interact with a visual, which will then apply that as a filter to the
rest of the visuals on that page, and this is known as interactive
filtering. This behavior really puts the power into the user's
hands, and they can decide how they want to filter the visuals.
This now makes a report so much more robust because it can
answer so many more questions about the data. Along with this
functionality, we, report developers, can add more explicit forms
of filtering using the Slicer visual that is available to us in the
visuals area. This allows us to choose a very specific field from
our data, that we know our end users will want to manipulate to
see that data in various different states. So now, lets dive in and
get a better understanding of these two filtering options, as they
will most definitely be elements we will see in our finished
reports.

Interactive filtering
Almost every single visual that is readily available to us within
Power BI has some sort of element that users can interact with.
At the same time, every visual can be impacted by these very
same elements. This really gives us a lot of room when it comes
to deciding which visuals we would like in a report page. We will
cover Interactive filtering again later on in this chapter, but it is
important to understand how this feature works so that we can
leverage it throughout the following examples. Let's create two
very simple visuals based off our current data model so we can
see exactly how this interactive filtering works. For right now,
let's not worry about the details of these visuals as they will be
fully described in later sections of this chapter.

Let's look at, setting up the example:

1. Select the Stacked Column Chart visual that will appear
in the report canvas. Make sure you can see the anchor
points we talked about earlier so that the following steps
will work.

2. Now, let's add a couple of fields to the visual. In the
Fields pane under the Internet Sales table, choose
the Total Sales calculated measure by placing a check in
the box to the left. You will notice that the field shows up
under the Value section of the Field area.

3. Do the same thing for the Sales Territory Country field

located under the Sales Territory table. This time, the
field shows up under the Axis section of the Field area.
Reference figure 5-3 here to validate that everything is set
correctly:

Figure 5-3

You may notice that some of the visual elements do not meet your
standards. For example, the size of the text for various items in this
visual are far too small to read. These are the types of changes that we
would make in the Format area but will not be doing in this specific
example. We will be examining the most common Format changes for
each of the visuals within their respective section in this chapter. Right
now, we just want to see how interactive filtering works.

4. We can already start to interact with any of the columns
we currently have, but since this is the only visual it really
isn't that exciting. So, let's add another visual to the
report canvas; make sure you left-click somewhere in the
empty space so that no visual is currently selected.

5. Now, we can select the Pie Chart visual, which will be
added to the report canvas. You may have to move the
visual to a location more to your liking.

6. We will now add two fields to this visual, and the first will
be the Age Breakdown calculated column. We can either
place a check in the box next to the field, or we can drag
that field on top of the correct visual; both methods will
have the same effect and we should see the Age
Breakdown field located under the Legend section.

7. Using either of the two methods just described, let's add
the Profit calculated measure to this visual as well, which
should populate under the Values section. See figure 5-4
to verify the setup. Remember, don't worry about
formatting right now:

Figure 5-4

Now that the example is all set and there are two visuals in the
report canvas, we can really see how interactive filtering works.
Go ahead and select (left-mouse-click) the column
labeled United States in the stacked column chart. You will

immediately see that the pie chart changes to having a much
smaller highlighted area. By hovering over the 35-44 section of
the pie chart, we can now see that the United States makes up
$413,617.35 of the $1,661,776.43 total for that category. This
same type of filtering can be done by the pie chart, which will
then affect the stacked column chart. Just with this simple
example, you can see how effective interactive filtering is in
answering questions about our data. Keep this in mind as we
move forward with our other examples so you can keep seeing
the impact this filtering has. We will cover additional option
settings around interactive filtering at the end of this chapter.

The Slicer visual
So now that we know that interactive filtering will always be an
option for users, what do we do when our end users want to filter
by something that isn't used inside our visuals? This is where
the Slicer visual comes into play. The Slicer visual only allows
one field to be assigned to it but, depending on what data type
that field is, we will have different presentation options. The first
option will be if we wanted to use a field of a String/Text date
type. The second option will appear if we use any of
the Numeric data types, which include: Decimal Number, Fixed
Decimal Number, Whole Number and any of the Date data types.
This second option is referred to as a Numeric Range Slicer. Let's
take a look at these two different options with the visuals we
already have.

Let's look at, setting up the visual:

1. Select the Slicer visual and move it to someplace
convenient within the report canvas. You can use the
anchor points to resize the visual as you see fit.

2. In our first example, let's add in the Temperature
Range field from the Temperature table to our
selected Slicer visual.

What we are seeing within our slicer is known as the List view.
This allows users to see a distinct list of all the options they can
now filter on from that specific field. For us, we can see that we
now have four temperature options to choose from, and we can

either single-select from our list, or multi-select. By simply left-
clicking any of the boxes next to our options, we can see that
both of our visuals become filtered based on the selected criteria.
So, if we were to select the Cold option, the stacked column chart
would be showing the Total Sales by Country when the weather
was cold; see Figure 5-5:

Figure 5-5

In order to multi-select, you have two options. The first is to hold down
the Ctrl key on your keyboard while making your selections. The second
option lies within the Format area under the Selection
Controls expandable menu. Here, you will find an option called Single
Select, which is set to On by default, and by turning this off you no longer
need to hold the Ctrl key to multi-select.

Now, let's add another slicer to our current report page, which
uses a field of a numeric data type, so we can explore
the Numeric Range Slicer.

Let's look at, setting up the visual:

1. Ensure that you have no other visual selected, and choose
the Slicer visual once again. Resize and move the slicer to
your liking.

2. For this slicer, let's add the Year field from the Date
(Order) table.

Immediately, you will see a very different presentation for our
filter options. We have a sliding bar that can be moved from
either side to give us a range of values, which will be used to
filter the other visuals on our page. By moving the left slider one
value to the right, we can see that the year 2005 has now been
removed from our range and the data in our visuals have
changed; see Figure 5-6. It should be noted that this slicer that
we are using to filter by year could also be set to use
the List format that our temperature slicer is using. Imagine,
though, if rather than choosing the Year field as we did, we
selected the Date field. The Date field has so many unique
choices for filtering that using the List format would be
impossible. This is really where the range format for the slicer
makes the most sense. As well, there are a couple other formats
available to us within the slicer. We can find those options in the
upper right-hand corner of the slicer visual. Let's take a look at

what those formats are and when they are available to us:

Figure 5-6

Format options from figure 5-6 are as follows:

1. List: This option is available no matter what field you
select. It is a distinct list of values from the selected field.
This is better used when there is a small number of
options to choose from.

2. Dropdown: This gives the user a drop-down menu that
will contain a distinct list of values from the selected
field. This is very similar to the List option, but our
choices are hidden until we hit the drop-down option.
This is still meant for a smaller set of values so that users
don't have to scroll through hundreds of choices.

3. Between: Here we have the option from our second
example using the Year field. This choice will only
present itself for fields that are of a numeric data type,
and this includes dates. It allows users to specify a range
of values to leverage as the filter by the use of a sliding
bar.

4. Less than or equal to: Very similar to the Between
option, but the sliding scale can only be adjusted from the
left side.

5. Greater than or equal to: This is the same as the
previous option, except you can only adjust the sliding
scale from the right side.

When using the List option for a smaller set of filter choices, try changing
the orientation from vertical to horizontal. If you add a background
color to this setup, it gives the feeling of having buttons to filter with. To
set this up, just go to the Format area of the slicer. Expand
the General area and switch the value within the Orientation section to
Horizontal. Then, expand the Items area and select a font color and
background color of your choice, and you will see the design feels like a
set of buttons.

So, now we know a couple different ways to allow our users to
filter the visuals we have created for them. Interactive filtering
will always be there for our users, but we can take a more
traditional route with the Slicer visual and present them specific
options they would find meaningful to filter the data. The last
thing we will do is rename this report page from Page 1
to Slicers.

Visualizing tabular data
We will see that there are many options within Power BI to
visually represent data, but sometimes our users may want to see
and compare detailed data and exact values. In these scenarios,
using the Table or Matrix visual ends up being our best choice.
When leveraging either of these two visuals, it is important to
take advantage of the Format area to ensure that users can easily
interpret the detailed data that is being presented. One of the
best ways to bring attention to values of importance with these
visuals is by using Conditional Formatting. We will explore this
option, as well as take advantage of the hierarchies we created in
Chapter 3, Building the Data Model, to allow for drill downs within
the visuals.

The table visual
The table visual is perfect for looking at many values (measures)
for a category. To really make the table shine, we will also want
to take advantage of the Conditional Formatting option that is
available to us. In our example, we will be using the Sales
Territory Region as our category and looking at four different
values for it.

Let's look at, setting up the visual:

1. Rename the blank page we are working on from Page 1
to Tabular Data.

2. Select the Table visual and resize it to take up a little less
than half the report canvas. Notice, similar to the slicer,
that there is only one area in which to populate fields,
called Values.

3. The first field we will want to select will be Sales Territory
Region from the Sales Territory table; this will be our
category.

4. Next, navigate to the Internet Sales table and select the Total
Sales measure. Also, select the Profit, Total Cost, and Total
Transactions measures. See Figure 5-7 for reference:

Figure 5-7

Already, we can see how this table provides great insights into
our selected category, Sales Territory Region. By default, though,
there are many formatting options that we will want to adjust.
One of the first items will want to change is the size of the text
for the data, as well as the headers. With the Table visual
selected, go into the Format area (roller-brush icon) and expand
the Column Headers section. We will see there are many options
here for us, but for now let's simply adjust the Text Size option to
something larger, making it easier to read the headers. Next, let's
expand the Values area and make the same change here for
the Text Size option. Now that our table is easier to read, let's
explore the Conditional Formatting option, which will let us
customize text or background colors based off values. If we

return back to the Fields area where we can see our five options,
you will note a small drop-down arrow next to each of our fields.

Select the arrow next to our Total Sales measure, and you will see
the option for Conditional Formatting, as shown in Figure 5-8.
When you place your mouse icon over the Conditional
Formatting option, you will see that we are presented with three
choices that are similar in functionality and setup. The one we
will focus on is the Background color scales option, so go ahead
and select that option. A menu will appear in which we will
simply only change one option; place a check mark in the box
that is in the bottom left that says Diverging. After hitting okay,
we will now see that our Total Sales column is color-coded so
that we can easily identify the regions that are good (green) and
bad (red) performers. This is something that we can choose to
apply to whichever columns we feel would benefit most
from Conditional Formatting, but it is not necessarily required.
With the use of this table visual, we can get a very quick and
detailed understanding of performance for our Sales Territory
Region category.

It is important to also remember about Interactive Filtering with the
table visual. Any of the rows that are present within the table can be
selected, and will apply a filter to all other visuals on the same page.

Figure 5-8

The Matrix visual
Where a table does a great job of allowing users to consume tons
of detailed data about a single category, the Matrix visual can
accomplish this for more than one category. The Matrix visual
allows users to not only select a category for the rows, but means
we can also select a field to populate the columns, which allows
us to see detailed data at a cross section for two categories.
Conditional formatting is also available for use within
the Matrix visual, and is incorporated in the same fashion as we
accomplished in the previous example. Other than Conditional
Formatting, the Matrix visual can take advantage of established
hierarchies to give users that capability of drilling down into
more granular data. Many of the other visuals can also take
advantage of hierarchies, but for tabular data the Matrix visual
does a great job with this.

Let's look at, setting up the visual:

1. Ensure that you do not have any other visual selected,
and choose the Matrix visual from the visual's area.

2. Firstly, we will populate the Rows area with our Sales
Territory Drilldown, which you will find under the Sales
Territory table. You will see that when we place a check
mark next to the Sales Territory Drilldown option, it brings in
three different fields, starting with Sales Territory Group.

3. Next, we will select what is known as a natural hierarchy
which Power BI automatically creates from our Date
(Order) table. Place a check mark next to the Date field,

which will bring in the Year, Quarter, Month, and
Day fields. If these fields do not automatically become
populated in the Columns area, just drag them to that
location. Now, we have our two categories with options to
drill down to get more granular data.

4. Lastly, let's add two measures to the Matrix under
the Values area. Select both the Total
Sales and Profit measures. See Figure 5-9 for
reference. Move and resize the Matrix as you see fit:

Figure 5-9

Now, we can see that the amount of data available to us is even
greater than that of the Table visual. We should apply the same
format changes to the Text Size as we did for the table at this
point. The Matrix allows us to see fantastically detailed
information about the different geographic regions, as well as a
breakdown per year. Also, you will see that there are some new
icons in the upper left of the visual which relate to the drilldown

feature we spoke of earlier. Because we have hierarchies on both
the rows and columns, we must decide which we would like to
expand for further details. We will focus solely on the rows
option and expand upon the geographical category. The first
upward pointing arrow, which should be currently grayed out,
allows users to move up a level in the hierarchy, but we are
currently at the highest level. The option just to the right of this,
which is depicted by two disconnected downward arrows, will
change the category to the next level of the hierarchy, which is
the Sales Territory Country in our example. Let's go ahead and
select this option two times so that we are displaying the Sales
Territory Region. The third option, which is depicted by two
connected downward arrows will also go down one level at a
time through the hierarchy, but it will also retain the previous
(higher) category. By having the Matrix and Table next to each
other, you can see the difference in detail that can be achieved by
each of them. Both, though, can benefit greatly from Conditional
Formatting.

Visualizing categorical data
Where the Table and Matrix visuals allow for a detailed look at
multiple measures across a category, the following visuals are
best for displaying data values across categories. In the
upcoming visuals, we will be displaying Bars, Columns, and
other visual elements, which will be proportional to the data
value. These visuals have a far less detailed few of the data, but it
is very easy to distinguish the differences of the values within the
chosen category. All of the visuals allow for interactive filtering
and the use of drilldowns, which we will not focus on since it was
covered in the previous examples. We will focus on how to
understand and configure the following visuals:

Bar and Column Charts

Pie and Donut Charts

The Treemap Visual

Scatter Charts

We will continue using the same Power BI report from the
previous examples, but we will want to create a new report page
and call it Categorical Data.

Bar and Column charts
Both the Bar and Column charts are very similar in setup and
how they visual data. The only difference here will be the
orientation: the Bar chart uses rectangular bars horizontally
where the length of the bar is proportional to the data, while
the Column chart displays the bars vertically, but both are used
to compare two or more values. Both of these visualizations have
three different formats; Stacked, Clustered, and 100%
Stacked. For our example, we will focus on the Bar chart, but
users can easily switch over to the Column just with the click of a
button.

There are some situations where the Bar chart will better display data,
and the same thing can be said of the Column chart. The biggest
limitation for the Column chart would be the limited space on the x-axis
where the category would go. So, if you have a lot of data labels or if
they are very long, you may find that the Bar chart is the better option.
An example where you might choose the Column chart over the Bar chart
is if your dataset contains negative values. In a Bar chart, the negative
values will show on the left side while in a Column chart they will display
on the bottom. Users generally associate negative values with a
downward direction.

Let's look at, setting up the visual:

1. Select the Stacked Bar Chart option and move and resize
the visual to take up a quarter of the report canvas.

2. The first field we will want to select is Sales Territory Country;
this should populate in the Axis area.

3. Next, let's add our Profit measure, which should populate
in the Value section.

Just with these two fields, we can very easily comprehend which
countries make the most profit and which makes the least. As
you can see though, there are more sections of the Fields
Area that we can supply values for, namely the Legend section.
By adding a category to this area, we can add sections to our
original category, which shows the countries. Let's go ahead and
add the Age Breakdown column to the legend for this visual (see
Figure 5-10). Just like that, we have a very exciting display of our
company's profit broken down by country and age group. Users
can now hover over any section of the bar chart and the tooltip
will display the values for that specific section. There is, though,
another great format option that we can enable to make it even
easier to understand the data, and it is called Data Labels. To
enable this, simply select the Format Area and you will see an
option called Data Labels that can be toggled on and off. By
turning this option to On, we now can see the profit breakdown
for each country by age category, as seen in Figure 5-10:

Figure 5-10

In regards to the other two options, Clustered and 100%
Stacked, you can simply select those visuals to experience the
different presentations. You will notice the Data Labels remain
and add great value regardless of the visual selection. As well
with the addition of the Legend, we have another way to do
interactive filtering.

Pie and Donut charts
Both the Pie chart and Donut chart are meant to visualize a
particular section to the whole, rather than comparing individual
values to each other. The only difference between the two is that
the Donut chart has a hole in the middle, which could allow for
some sort of label. Both of these visuals can be very effective in
allowing interactive filtering, but if there are too many categories
it can become difficult to read and interpret.

Let's look at, setting up the visual:

1. Ensure that no other visual is currently highlighted, and
select the Donut chart visual. Move and resize the visual
so as to take up a quarter of the report canvas, preferably
above or below the Bar chart.

2. We will be populating two fields for this visual; the first
will be Temperature Range, which should populate
under the Legend section. The second field, which we
want to show up in the Values section, is the Total
Sales measure.

Because there are only four values within the Temperature
Range category, this chart looks very clean and easy to
understand. There is something, though, that we can add that
will make it even easier to read: Detail Labels. This option is very
similar to Category Labels in that we can display the data of
each of the quadrants without having to use the tooltips. One

thing that is different though is that it is already on, and all we
need to do is decide how much detail we would like to have
displayed. The more values that are present this can cause even
more clutter though. To access these options go to the Format
Area and expand the Detail Labels category, and manipulate
the Label Style dropdown. For our example, let's choose the All
Detail Labels option. As you can see in figure 5-11, we have a
very nice and easy way to understand the presented data, as well
as use it for interactive filtering:

Figure 5-11

The Treemap visual
A fantastic visual for displaying hierarchies is definitely
the Treemap visual. It accomplishes this by nesting the data in
rectangles, which are represented by color, and this is commonly
known as a "branch". If you add a category into
the Details section of the visual you will note smaller rectangles
within the "branches" and these are known as "leaves", hence the
name Treemap. In order to really maximize this visual, we will
need to do a little extra setup and bring in a new table, and
create a new hierarchy. Let's go through this process now:

Let's look at, setting up the example:

1. We need to bring in the DimGeography table from the
AdventureWorksDW excel workbook. Since we accomplished this
during Chapter 3, Building the Data Model, you should be
able to see this source under the Recent Sources option.
If not, you can connect to this source by pointing to this
location: C:\Packt\Data Sources\AdventureWorksDW.xlsx.

2. Once the Navigator appears, we will want to place a
check mark next to the DimGeography table and hit Load.

3. We need to do a couple quick fixes to this new table
before we can leverage it. Navigate to the Relationship
View and delete the inactive relationship between Sales
Territory and DimGeography.

4. Also let's rename this new table to Geography and hide the
following fields: FrenchCountryRegionName and
SpanishCountryRegionName.

5. Lastly, let's create a new hierarchy that we will use inside
of this Treemap visual, as well as the Map visuals later
on. Right-click on the EnglishCountryRegionName column and
select New Hierarchy from the dropdown. Rename the
new hierarchy Region Drilldown.

6. Add StateProvinceName to the hierarchy by right-
clicking on it and selecting Add to Hierarchy from the
dropdown. Repeat this step for the City field. See Figure
5-12 for reference:

Figure 5-12

Now that we have a new geographical hierarchy that goes all the

way down to a city level, we can see how this will display with
our Treemap visual.

Let's look at, setting up the visual:

1. Click on any of the white space on the report canvas to
ensure no visual is selected, and bring in
the Treemap visual.

2. Move and resize this visual so that it takes up a quarter of
the remaining report canvas.

3. First. we must decide on what we will be grouping on,
and in our situation. that will be the newly defined Region
Drilldown.

4. Next. we will add the Total Sales measure to
the Values area and we start to see the beauty of this
visual.

5. The last thing we will add is to the Details area so that we
can see some "leaves". Bring in the Year field from the Date
(Order) table.

The size of each of the rectangles is determined by the value
being measured, which in our case is Total Sales. The "leaves" in
this visual are portrayed by the Year category while our Region
Drilldown creates the "branches". Because we are using a hierarchy,
we have full access to the Drilldown capabilities shown earlier.
You should also now be able to tell that the Treemap visual
arranges the rectangles by size from top left (largest) to bottom
right (smallest).

The Scatter chart
The last visual we will look at the is used for categorical data is
the Scatter chart, sometimes referred to as the Bubble chart.
This visual allows us to show the relationships between two or
three numerical values. We are given the opportunity to place
values for the x and y axis, but what is different about this visual
is that we can add a third value for the size, and this is where the
name Bubble chart comes from. There is also a very unique
option available to us within the Format Area to really bring this
data to life, and it is called the Play Axis. Let's go ahead and
create our Scatter chart first, and then we will talk about
the Play Axis.

Let's look at, setting up the visual:

1. Make sure no other visual is currently selected and
choose the Scatter chart. Move and resize the visual to
take up the remainder of the report canvas.

2. The first field we will select is the Total Sales measure, and
this will serve as the value for our X axis.

3. For the Y axis, let us select the Profit measure.
4. The third value that we will use for the size of the bubbles

will be the Order Quantity field.

5. Finally, we must choose the category that we would like
to see all these measure for, and we will use
the EnglishCountryRegionName field from the Geography table. Make

sure that this field is displayed under the Legend section,
which should give you a visual like in Figure 5-13:

Figure 5-13

Now, the last part that we will add to this visual will be the Play
Axis, which is unique to the Scatter chart. By adding some

category of time, we can bring a little animation to this visual.
For our example, let's add the English Month Name field to
the Play Axis section, and you will see a Play button appear
along with our 12 months. By hitting the button, you will now be
able to watch the bubbles move to display their values at the
specific moments in time.

Visualizing trend data
When we use the term Trend Data, we are talking about
displaying and comparing values over time. Power BI gives us
many options in this category, each with their own focus. The
idea for each of the visuals, though, is to draw attention to the
total value across a length of time. Let's create a new report page
and call it Trend Data, and dive right in to see what the
differences are between the following options:

Line and Area Charts

Combo Charts

Ribbon Charts

Waterfall and Funnel Charts

Line and Area charts
The Line chart is the most basic of our options when it comes to
looking at data over time. The Area chart and Stacked
Area chart are based on the line chart; the difference is that the
area between the axis and the line is filled in with colors to show
volume. Because of this, we will focus on the Line chart for our
example. Since we have a very nice Date hierarchy, we will use
this alongside a couple of measures to see trending.

Let's look at, setting up the visual:

1. Select the Line chart visual and move it to take up a
quarter of the report canvas.

2. The axis is where we dictate our time category and, for
this example, we will use the built-in Date hierarchy by
selecting the Date field from the Date(Order) table.

3. We will be using this chart to compare two different
measures over time; they will be the Total Sales and Prior
Year Sales measures. Select both of these, and they should
populate under the Values section.

4. To make it a bit more of an exciting visual, let's take
advantage of the hierarchy and it expand it down two
levels to include the quarter and month, as seen in Figure
5-14:

Figure 5-14

With this Line chart, we can clearly see there was a large growth
in sales between 2007 and 2008. Visuals that focus on Trend
Data can very easily illustrate any outliers, which can allow users
to further investigate the cause of the seen trend. This visual can
also benefit from some of the formatting options we have talked
about previously, such as Data Labels.

Combo charts
As the name states, Combo charts combine the Line chart
and Column chart together in one visual. Users can choose to
have either the Stack Column format or the Clustered
Column format. By combining these two visuals together, we can
make a very quick comparison of the data. The main benefit of
this type of chart is that we can have one or two Y axes. What
this means is that we can either display two measures that would
have the same Y-axis, something like Total Sales and Profit. Or,
we could show two measures that are based on completely
different values such as Order Quantity and Profit; let's use the
two for our example.

Let's look at, setting up the visual:

1. For this example, we will be using the Line and Stacked
Column Chart visual. Select and resize it to take up a
quarter of the report canvas.

2. For the Shared Axis area, let's select the Date field from
the Date (Order) table.

3. We will then select the Order Quantity field to populate
the Column Values section.

4. The last field we will select is the Profit measure, but when
we check mark this item you will see that it is placed
under the Column Values section, which is incorrect.
Simply drag the Profit measure to the Line
Values section.

In this example, you can see that we have two Y axes; the left one
relates to the Order Quantity while the right one corresponds
with our Profit measure. Go ahead and expand the hierarchy one
level; this will give us more data points to see the trending
between the two measures, as seen in Figure 5-15. From this
visual, it's fairly easy to validate that when we sell more items we
make more profit. This, like many other visuals, can also benefit
from Data Labels:

Figure 5-15

The Ribbon Chart
The Ribbon Chart is no different than the other visuals we just
worked with; it is good at viewing data over time. What
makes Ribbon Charts effective though is their ability at showing
rank change; the highest range or value is always displayed on
the top for each of the time periods. The chart also does have a
unique visual flowing appeal to it that is different than the other
visuals. Let's take a look that the Ribbon Chart.

Let's look at, setting up the visual:

1. Select the Ribbon Chart to add as a new visual, and resize
it to take up a quarter of the report canvas.

2. For the Axis area, let's choose the Date field from the Date
(Order) table so that we have a hierarchy available for
drilldown.

3. The next field we will add to the visual is the Total
Sales measure, which should populate under the Value
section. At this point, you will see that it pretty much
looks like a Column Chart.

4. Once we add a category to the Legend area, we will get
that flowing ribbon presentation. For our example, let's
add the EnglishCountryRegionName to the Legend area.

The first thing you may notice is the lighter areas between time
periods; this is really one of the best parts of the Ribbon Chart.
This area shows the value for the category for the previous

period and the upcoming one. Also, the tooltip does give each
value a rank and shows any increases as well as decreases. This,
like many other visuals, also gets a nice visibility bump by
adding Data Labels, as seen in Figure 5-16:

Figure 5-16

The Waterfall Chart
This next visual, the Waterfall Chart, is very helpful in
understanding the changes that occur from an initial value. It
displays a running total in relation to values being added or
subtracted. By populating a field in the Breakdown option of the
visual, we can see if it has had a positive or negative impact from
value to value. Let's set up an example of the Waterfall Chart.

Let's look at, setting up the visual:

1. In our current report page, we should have a quarter of
the area still available. We will use half of this for
the Waterfall Chart. Let's go ahead and now add this
visual to the report page.

2. The first area we want to populate is Category, and for this,
we will select the Date field from the Date (Order) table. As
before, this will bring in a hierarchy.

3. Next, select the Profit measure to represent the Y-axis.
With this, we can see how much each year has
contributed to the total profit.

4. The last field we will select is Age Breakdown. Upon selecting
this field, you will need to move it to populate
the Breakdown section.

Now, we can see the strength of the Waterfall Chart, and we can
see how much contribution each age group provided between

years. By default, the visual uses the green color to indicate
positive changes and red to illustrate negative ones, but this can
be changed from the Format Area if you are so inclined.
Depending on how many values are within your breakdown
category, enabling Data Labels can be useful in this visual, as
seen in Figure 5-17:

Figure 5-17

The Funnel Chart
The Funnel Chart allows users to see the percentage difference
between values. Normally, the highest value is at the top and the
lowest is at the bottom, which gives the look of a funnel. Each
stage of the funnel with tell the percentage difference between
itself and the previous stage, as well as compared to the highest
stage. With this type of design, it makes sense that the Funnel
Chart is very effective when visualizing a linear process with at
least three or four stages. Our data set does not have a process
with multiple stages, but we can still create something that gives
us value.

Let's look at, setting up the visual:

1. With the remaining space we have on this report page, go
ahead and add in the last visual for this section,
the Funnel Chart.

2. For this visual, we will only be adding two fields. The first
will be the CountryRegionCode, which will be what we use for
the Group section.

3. The second item that we will add to the Values section will
be the Profit measure.

The way we have set up this visual allows us to very easily
identify which countries make the most profit and which make
the least, but this is something we can achieve with many other
visuals. What gives the Funnel Chart an edge is when we hover
over one of the sections within the funnel and note the items that

appear within the tooltip. You will see, when we hover over the
section for France, that the tooltip lets us know how it compares
to the section directly above it, as well as how it compares to the
highest section, which is represented by the United States.

Visualizing KPI data
Key Performance Indicator is what KPI stands for. It is a
measurable value that demonstrates how well a company is
achieving a certain objective. With Power BI, we have a couple of
options to measure the progress being made towards a goal for
operational processes. The strength of a KPI visual lies in its
simplicity. It displays a single value and its progress toward a
specific goal. Let's create a new Report Page called KPI Data,
and take a closer look at the Gauge and KPI visuals.

The Gauge visual
The Gauge visual displays a single value within a circular arc and
its progress towards a goal or target value that we specify.
The Target Value is represented by a line within the arc. With
our current data set, we do not have a measure that we can use to
illustrate an accurate business goal, so we will have to create it.
Before we set up this visual, we will need to create a new
calculated measure.

Let's look at, setting up the example:

1. We will be using the Total Sales measure as our value in
the Gauge visual. Our target will be 10% more than the
previous year's total sales, so we need to use DAX to
create this measure.

2. Right-click the Internet Sales table and select the New
Measure option, which would bring us to the formula
bar.

3. Name the measure Sales Target, and use the following DAX
formula to get our target:

Sales Target = [Prior Year Sales] * 0.1

Now that we have all the measures we need, lets set up the gauge
visual and create our first KPI.

Let's look at, setting up the visual:

1. Select the Gauge visual and move/resize it as you see fit.
2. For the Value section, select the Total Sales measure.
3. Select our newly created Sales Target measure for the Target

Value area. Upon selecting this measure, it will not
automatically be populated for the Target Value, so you
will need to move it.

Using a Slicer visual alongside this KPI will be really helpful with
our data set. Go ahead and add the Slicer visual using
the Year field for the value. If you choose the year 2008, you will
see that the value changes along with the target, as seen in
Figure 5-18. With our dataset, the year 2008 is where we have
our most recent transactions, and because of this visual, we can
see that we have still not met our goal. If you look at any of the
other previous years, we can validate that we were able to
surpass our target every time:

Figure 5-18

The KPI visual
Where the Gauge visual uses the circular arc to show the current
progress, the KPI visual takes a more explicit approach and just
shows the value in plain text, along with the goal. The only real
visual elements that are in play with this visual occur when the
indicator value is lower than the goal and the text is shown in
red, and when it has surpassed the goal and the text is in green.
This is definitely one of the more direct visuals and perfectly
exemplifies what we want for a KPI.

Let's look at, setting up the visual:

1. Ensure that no other visual is selected, and bring in
the KPI visual, and move it as you see fit.

2. For the Indicator section, go ahead and select the Total
Sales measure.

3. Next, choose the Prior Year Sales measure to represent
the Target Goals section.

4. The last piece that we need to add is for the Trend
Axis,for which we will be using the Year option from
the Date (Order) table.

If, after following the preceding steps, the visual displays a value
of Blank for the indicator, do not worry. This is because it is
trying to show the total sales for the year 2010, the most recent
value in our dataset. Unfortunately, we do not have any sales for
2009 or 2010, so to have this visual display correctly simply

choose any other year from the slicer that we added in the
previous section. Once you have accomplished this, you will now
be able to view the KPI visual, and it should look like Figure 5-
19:

Figure 5-19

Visualizing geographical data
One of the most exciting ways to visualize data in Power BI is
through the various map options that we have. All the maps
serve the same purpose to illustrate data in relation to locations
around the world, but there are some small differences between
each of them. All of the maps, except the Shape Map, have the
option to provide the latitude and longitude coordinates, which
will be the best way to ensure the appropriate location is being
displayed. The reason for this is because the information that we
provide the visual will be sent to Bing Maps to verify the
positioning on the map. If we do not provide enough detail,
then Bing may not return the desired results. For example, if we
were to provide the map visual with a field that contains only the
city name, that could result in some confusion because there may
be multiple cities in the US with that name. In these scenarios,
we will either want to supply some sort of geo-hierarchy to give
better definition, or we can create new columns with more
detailed information. Power BI also has a built-in feature when
dealing with geographic data that allows users to help identify
the type of data that is being provided: this is called Data
Category. Let's go ahead and take advantage of this for our data
set to make the map visuals more accurate.

Let's look at, setting up the example:

1. Within the Fields Pane, expand the Geography table.
2. The first field that we will categorize will be the City field.

Highlight this field and then navigate to
the Modeling ribbon. Once here, you will see the Data

Category option.
3. Inside the drop-down menu, we will select the City option.

Upon accomplishing this, you will see that there is now a
globe icon next to the City field.

4. Repeat the steps above for the StateProvinceName field, but
choose the State or Province option for the data category
dropdown.

5. The final field that we need to perform these steps for
is EnglishCountryRegionName; select the Country/Region option from
the dropdown.

Now that we have given a better description of our geographical
data, we can proceed with using the various map visuals. One
thing of note is that using any of these visuals does require
internet access because we are going to be sending data to Bing
Maps. Before we begin, create a new Report
Page called Geographical Data.

The Map visual
The first visual we will use to illustrate geographical data is
simply called the Map visual. This visual is also referred to as
the Bubble Map because it plots the points of data with circles
that can be set to change in size based off a supplied measure.
With this visual, if you have the latitude and longitude
coordinates in your data set, then nothing needs to be sent
to Bing Maps. We do not have such detailed data, so we will
need to supply the necessary information through
the Location section, which will be sent to Bing Maps.

Let's look at, setting up the visual:

1. For this new report page, let's select the Map visual to get
things started, and move it to take up a quarter of the
report canvas.

2. To ensure there is no confusion about the locations we
want to map, we will provide the geo-hierarchy, which we
have created within the Geography table. Go to this table and
select the Region Drilldown option, which will populate
the Location section. Just with this, we can see the six
countries represented by a bubble.

3. Next, we will add a measure that will dictate the size of
the bubbles we are currently seeing. Let's use the Total
Sales measure for the Size section, so that larger bubbles

will show countries with higher sales amounts.
4. The last thing we will add to this visual is the Age

Breakdown to the Legend section. With this, the bubbles
start to look like little pie charts, as seen in Figure 5-20:

Figure 5-20
When using a geo-hierarchy with a map, enabling the Drill Mode, which
is signified by the down arrow in the upper right, can make this visual
even more enjoyable. Remember this for any visual where we have a
hierarchy selected; you should explore the different views it gives you.

The Filled Map visual
Unlike the traditional Map visual, which uses a bubble to
indicate locations, the Filled Map visual uses shading to display
the geographic data. So, the lighter an area looks, the lower the
representative value. For this visual, it is recommended to visit
the Format Area and dictate the range of colors for the shading
so it will appear more apparent.

Let's look at, setting up the visual:

1. Select the Filled Map visual and move it to take up a
quarter of the report page.

2. Just like the previous example, we will use the Region
Drilldown from the Geography table to populate
the Location section.

3. The only other field we will add to this visual is
the Profit measure, which will control the Color
Saturation option.

With just these setting, we can see the effect of this map, but
because of the color selection it is very difficult to see the lighter
shades; let's fix this. By going into the Format Area and
expanding the Data Colors section, we will be presented with a
couple of options. The first one we should turn on is the option
labeled Diverging. Next, we should change the colors so that
they are more distinguishable. For this example, let's use a more
traditional option for our colors; red for Minimum, yellow for
Center, and green for Maximum.

The Shape Map visual
Similar to the Filled Map, the Shape Map visual uses
shading/saturation to show the geographic data. One thing that
does make the Shape Map unique is that it allows users to
upload their own maps to be illustrated. In order to accomplish
this, you must have a JSON file which contains all the necessary
information required by Power BI. By default, the visual does
offer some standard maps but currently does not have an option
to show the entire world. Let's take a look at the Shape
Map visual.

Let's look at setting up the visual:

1. Select the Shape Map visual and move it to take up a
quarter of the report page.

2. This map does not allow for multiple fields to be placed in
the Location section, so we cannot use the Region
Drilldown as before. For this example, we will use
the StateProvinceName. Do not be alarmed if nothing
appears initially, as we still have to tell Power BI which
map we want to use.

3. Before we go into the Format Area to choose a map, let's
add the Profit measure, which will control the
shading/saturation.

4. Now, we can look at the Format Area and expand
the Shape option, where there will be a dropdown
selection for the Map category. For our example, we will

want to choose USA: states.

5. This is another example where taking control of what
colors will be used for the shading can be helpful, so let's
apply the same changes that we did for the Filled
Map under the Data Colors section.

The ArcGIS Map visual
The final map we will talk about is the ArcGIS Map visual; this
one is very different in that there is an option to pay for
additional features. Also, the location where you can make visual
changes to the map is different as well. Normally, we would
access the Format Area but for this map, you must hit the
ellipsis in the upper-right corner of the visual and choose
the Edit option. We will be focusing on a couple of areas here,
but there are lots of options that are worth exploring. Let's take a
look on how to configure the ArcGIS Map visual.

Let's look at, setting up the visual:

1. We should have one more section available within the
report canvas to place this last visual, so let's select
the ArcGIS Map visual.

2. Just like the Shape Map, we are unable to select multiple
fields to populate the Location section; we will
use StateProvinceNanme for our example. You will
notice that after loading the information there will be a
small yellow ribbon at the bottom saying that it failed to
load some of the information. This is fine because this
field contains provinces that are outside the United
States.

3. The only other field that we will map for this visual will
be the Total Sales measure, and we will use this for
the Color section.

This visual is ready to go with the configuration that we have set,
but if we want to change how things look we must go a new
route. In the upper right-hand corner you will see an ellipsis;
left-click this and choose the Edit option. This brings us to a
display that looks very similar to Focus Mode, but you will notice
there are quite a few options at the top of the map. The first area
we will visit to make a slight change will be the Symbol
Style option. Here, we can control the level of transparency as
well as the color palette being used. Select the dropdown menu
for the Color Ramp option, and choose whatever selection you
find enjoyable. This is the only change we will be making for our
example, but you should take the time and examine all the other
options available to you. Remember, there are even more options
to choose from if you decided to subscribe and pay for this
visual. All of these maps are very similar but each has a specific
functionality that does not exist in the others. The
traditional Map and Filled Map visuals are the most common
ones used, but you will need to decide when one might illustrate
your data set better than the other.

Leveraging Power BI custom
visuals
Throughout this chapter, we have seen many different visuals
and how they work with specific types of data. Although we
already have many options readily available with Power BI, we
have access to 100+ more visuals from the Microsoft store right
at our fingertips. Users can either navigate to the Microsoft app
store via any web browser or while inside of the Power BI
desktop application they can select the From
Marketplace option in the home ribbon. Once you select this
option, a menu will appear where you can simply search the
entire collection of custom visuals available. Once you have
found a visual that you would like to use, just hit the Add button
shown in yellow. Users can also download the physical file as
well, which can be uploaded into Power BI by using the From
File option, which is also in the home ribbon. It is important to
understand that when you select a custom visual, it saves as part
of the Power BI report file and doesn't remain inside of the
application. So, if you just downloaded a custom visual and then
closed down Power BI, when you restart the application you will
not see that custom visual unless you open the report you saved
the custom visual to. This is a fantastic feature, and it only
continues to grow so it is definitely worthwhile to check out the
marketplace.

Data visualization tips and
tricks
We have created six different report pages filled with different
visuals and looked into different configuration options for each
of them. That being said, we have barely scratched the surface of
all the features that are available to us, and with the very quick
update cycle Power BI has, that list of features will keep growing.
In this final section, we will look at a couple of features that are
not exclusive to just one visual, but can really help out when
designing a report. It is highly recommended to watch the
monthly videos that the Power BI team produces alongside the
actual product update. This way, you can know exactly what is
new and how to use it.

Edit interactions
Throughout all of our examples, we have had the capability of
using interactive filtering. We know that almost everything we
see inside a visual can be selected, and it will affect all the other
visuals within that same report page. This behavior can be
altered though, and there will be situations where you do not
want a specific visual to be filtered by any others. The way we
can control this is through an option called Edit
Interactions, which can be found under the Format ribbon when
a visual is selected. When you select the Edit
Interactions button, you will see new icons for all of the other
visuals that are currently not selected, as seen in figure 5-21. In
this example, I have the Pie Chart selected and I can now decide
if any of the other visuals will be affected by interactive filtering
from the Pie Chart. The two primary icons are a funnel which
lets us know that the visual will be filtered, and then a circle with
a line through it designates that it will not be filtered.
Occasionally, there will be an icon that looks like a pie chart,
which we can see for the Stacked Column Chart. This means that
the visual will be filtered by highlighting the filtered portion, as
shown in Figure 5-21. This option is something that you will
have to do for each individual visual:

Figure 5-21

The Analytics pane
For every visual, we worked with the Field Area and the Format
Area but there is an option you may have noticed that is called
the Analytics Pane. This option is available for most visuals, but
some of the options will not appear; for our example, we will
look at the Line Chart example we created. Once we have that
visual selected, we can choose the Analytics Pane and see that
we are presented with seven different lines that can be added to
the visual. All we have to do is decide which one we would like to
be displayed and turn it on. For our visual, let's add an Average
Line by expanding that section and selecting the Add option.
Once the line has been added, we can change the color, name,
transparency, style, and position from this same area, as seen in
Figure 5-22. Users can add as many of these lines as they so
choose, but remember, more is not necessarily better:

Figure 5-22

The Top N filter
At the very beginning of this chapter, we briefly talked about
the Filter Area and how we can apply filters to different scopes.
There are a couple of choices available to users for the filter
fields, but we are going to look at the Top N option. Even though
it is called the Top N filter, this option allows us to create a filter
that will show either the top or bottom number of values. For
example, if we look at the Ribbon Chart we created, we can see
that there are six countries that appear in the visual. With this
filter, we can set it so that it only displays the top four countries
based off a measure that we choose. So, in this situation, we
could have that measure be Total Sales, which is what the visual is
showing, or really anything we want. Let's go ahead and hit the
dropdown next to the EnglishCountryRegion field in Visual Level
Filters. If Top N isn't showing by default in the Filter
Type section, go ahead and select it from the dropdown. For
the Show Items section, we will leave the value of Top and
manually input the number 4, as shown in Figure 5-23. The last
thing that needs to be done is to decide what measure will be
used to determine the top four countries; we will keep things
simple and drag in the Total Sales measure, and hit Apply Filter.
The most important thing to remember is that you can use any
measure you want for this filter:

Figure 5-23

Show value as
Earlier in this chapter, we went through an example to take
advantage of Conditional Formatting. This option can be found
by hitting the downward arrow next to a field that is being used
in a visual. Within this area is where we will find another option
that is labeled Show Value As. This option will only be available
for numeric data types and allows us to show the values as a
percentage of the grand total. The best way to take advantage of
this is to place an identical column side by side and then use this
option to display one of them as a percentage. For our example,
let's revisit the Matrix visual we created for the Tabular
Data section. Locate the Profit measure in the Fields Pane and
drag it into the Values section for the visual, and place it directly
after the Profit measure that we already had in place, referencing
Figure 5-24. The visual looks a little odd since there is a
duplicated column, but let's change it to show a percentage.
Within the dropdown for the second representation of Profit,
choose the Show Value As option and select Percent of Grand
Total. The Matrix was already a great visual to quickly see a lot
of metric information about the Sales Territory Regions, but now we
have a firm understanding of what percentage each country is
contributing to the grand total:

Figure 5-24

Summary
In this chapter, we focused on how to configure visuals and what
data they best illustrate. We also saw a couple of the most
common formatting options that are used with these visuals. In
the next chapter, we will look into the concept of digital
storytelling. Power BI has a strong set of options that we can
leverage to allow users to experience and navigate through the
data in an adventurous and exploratory manner.

Using a Cloud Deployment with
the Power BI Service
You've spent the course of this book creating amazing reports
using the Power BI Desktop client. Now, it's time to share those
reports with your team, company, or customers. In this chapter,
you're going to learn about the Power BI service and how to use
it to do the following:

Deploy reports to the Power BI service

Create and interact with dashboards

Share dashboards

Secure your reports with row-level security

Schedule refreshes of your data

The Power BI service operates a freemium model. You can get
most of the features in the free model, but when you want
to share data with others and use team development, it will need
to be upgraded to the pro edition. Other features requiring the
pro edition are the ability to store larger datasets and more
frequently refresh, to name a few.

Before you begin this chapter, make sure you sign up for a free account
at Power BI (https://powerbi.microsoft.com/). Some sections of this book will
require a pro license, such as the section dealing with workspaces.

https://powerbi.microsoft.com/

Deploying to the Power BI
service
There are numerous ways to publish a report to the
PowerBI.com service, but the easiest way is by using the Power BI
desktop. To do this, you'll need to simply click the Publish button
in the desktop application, as shown in the following screenshot.
If you have not previously signed in with your free
PowerBI.com account, you will be prompted to create one or sign in
with an existing account:

https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/

You'll then be asked which workspace you want to deploy to. A
workspace is an area in the Power BI service that is much like a
folder, where you can bundle your reports, datasets, and
dashboards. You can also assign security to the workspace and
not have to worry about securing each item. Most importantly, it
allows for team development of a Power BI solution, where you
can have multiple authors on a solution. We'll cover much more
about workspaces in the Sharing Your Dashboards section of
this chapter.

At this point, select the My Workspace item, which will send the
report and its data to your personal workspace. The report will
then deploy to the Power BI service. The amount of time this
takes will depend on how large your dataset is. You'll then be
presented with two options: Open the Report or Get Quick
Insights.

Quick Insights is an amazing feature in Power BI that will try to
find additional interesting insights about your data that you may
not have known you had. For example, in the following
screenshot of the sample report, it found that Disney dominated
all other film studios in 2016. You'll notice that it not only
provides a graphic of the anomaly in your data, but also a
narrative to the right of the graphic. If you find any of the
insights especially interesting, you can click the push pin on the
top right of the graphic to save it into a dashboard. We'll cover
dashboards in the next section of this chapter:

If you open the report, PowerBI.com will launch and show you the
same report that you were viewing in the desktop in a web
browser. You'll also be able to immediately see the report in the
Power BI mobile app from your Android or iPhone. PowerBI.com has
four key areas that you can interact with:

DATASETS: This is the raw data that you have built in
the Power BI desktop. You can also build a new dataset
by clicking Get Data in the bottom-left corner of your
browser. When you click the datasets, you can also build
new reports from that dataset.

WORKBOOKS: You can upload Excel workbooks into
this area. These Excel workbooks can be used as a dataset
or can form pieces of the workbook that can be pinned to
a dashboard.

REPORTS: This refers to what you have built in the
Power BI desktop. These reports can be explored,
modified, or downloaded in this section.

DASHBOARDS: You can pin the best elements from
multiple reports into a unified set of dashboards. These
dashboards are the first thing most of your casual users
will interact with:

https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/

DATASETS
The DATASETS area of Power BI holds the raw data that makes
up your reports. When you left-click on one of your datasets, the
designer opens to build reports from the dataset. The designer
can be used to do the following things:

Create more Quick Insights

Create new reports

Refresh or schedule refreshes

Manage permissions

Download the Power BI Desktop file (.pbix)

When you start with a dataset, users can create new reports from
your data, even when accessing it through the web. The entire
user interface will feel nearly identical to Power BI Desktop, but
you will be lacking the ability to modify the model, query, and
relationships. The best part of building reports here is that you
have a central dataset that IT can own, modify, and make
human-readable so that the entire organization can build reports
off of it.

WORKBOOKS
The WORKBOOKS section gives you the ability to upload Excel
workbooks, which can be used as datasets for a report or to pin
selected parts of that workbook to a dashboard. Workbooks can
be updated by either reuploading the workbook, using the
database management gateway or using OneDrive. OneDrive is
Microsoft's cloud-hosted hard drive system. With OneDrive, you
can simply share or save your Excel workbooks, and if you're
using the workbook in a Power BI report, it can also refresh.

Creating and interacting with
dashboards
Once you have deployed your datasets and are using them in
reports, you're ready to bring together the many report elements
into a single dashboard. Often, your management team is going
to want to have a unified executive dashboard that combines
elements such as your sales numbers, bank balances, customer
satisfaction scores, and more into a single dashboard. The
amazing thing about dashboards in Power BI is that data can be
actionable and reacted to quickly. You can click on any
dashboard element and be immediately taken to the report that
makes up that number. You can also subscribe to the dashboard
and create mobile alerts when certain numbers on the dashboard
reach a milestone.

Creating your first dashboard
To create your first dashboard, start by opening a report that has
some interesting data. On each of the charts, tiles, and other
elements, you'll see a pin icon in the top right of that object.
After you click on the pin, it will ask you what dashboard you
wish to pin that report element to. You can, at that point, select a
new dashboard to create or choose an existing dashboard to add
the element to, as shown in the following screenshot. This is
what makes Power BI so magical—you're able to append data
from your accounting department next to data from your sales
and customer service teams, giving your executives one place to
look:

Once you pin the first item to the dashboard, you'll be prompted
with a link to the dashboard. The newly created dashboard will
allow you to resize elements and add additional tiles of
information. You can click Add Tile in the upper-right corner to
add additional interesting data, such as web content, images—
such as logos—text data, and videos to the dashboard. Most
people use this in the line-manager dashboard to insert a
company logo and a small video talking about the initiative of the
quarter that relates to the dashboard from the executive team.

You can also pin real-time data as a tile, as well as use custom
streaming data. Once you click Custom Streaming Dataset, you
have the option to add a new dataset from Azure Stream
Analytics or PubNub, or a developer can use the API to push data
directly in via the API. Azure Stream Analytics is the most

common of these live data streams. In this mechanism, devices
could stream data through Azure Event Hub, for example, and
then get aggregated with Azure Stream Analytics. Imagine a
smart power grid sending thousands of records a second to the
cloud, and then Azure Stream Analytics aggregating this to a
single record every five seconds, the status shown by a moving
needle in a gauge or line graph in Power BI.

One of the key ways to view Power BI is from a phone either in
web view or in the native Power BI client, which is downloadable
from the App Store for Android or iPhone. There are going to be
some dashboard elements that you'll want to exclude from a
phone device because the surface area is too small. By the very
nature of the device, most people sign into Power BI on their
phone to get a quick look at the numbers. For those consumers,
you can create a specialized phone view of the dashboard.

Simply click on the Web View drop-down box in the top right
and select Phone View. The default phone view will contain every
element from the web view. To remove items, hover over each
report element and click the push pin to move it to the Unpinned
Tiles section, as shown in the following screenshot. Once you're
done, you can click the phone icon (or Phone View name, based
on your resolution) and flip it back to the Web View again:

Asking your dashboard a
question
Once the dashboard is complete, you're able to ask questions of
your data. Right above the dashboards' data, you'll see the area
where you can Ask a question about your data. For example, you
can ask the question "Show me the total stores by state", and
Power BI will typically produce a geography answer from that
question. If you'd prefer to see your answer as a bar chart instead
of a map, you can explicitly ask for it as a graph element—for
example, "Show me the total stores by the state in a bar chart".

If you like the answer that comes back, you can click Pin Visual
in the top-right corner to pin the report item to a dashboard. You
can also expand the Filters and Visualizations on the right to be
very precise with your report item. For example, you may only
want to see stores with sales above a certain level. While Power
BI is great at answering questions with filters, it sometimes
needs fine tuning. If you're curious as to where Power BI pulled
this data from, below your newly created report, you'll see the
source of the data from which the report was derived.

A great way to encourage your users to utilize this feature is to
seed Power BI with some sample questions. To do this, select the
settings gear box on the upper-right corner of your screen. Once
there, click the dataset that you wish to create sample questions
for in the Datasets tab, as shown in the following screenshot.
Expand the Featured Q&A Questions section, click Add a
Question, and add several questions that might interest your
user:

Creating featured questions will help your users to start to use
the vocabulary of the report. For example, your sales team may
be used to calling someone a "client", but your marketing team
uses the term "customer". Featured questions will encourage all
users to refer to customers as clients. If you want to have your
cake and eat it too, you can create synonyms inside the Power BI
desktop. You can do this in the modeling tab when looking at
your relationships. You can also create more advanced
linguistic models in the Power BI desktop by importing linguistic
models. This can help with questions that you think users might
ask, such as "Who is my best customer in New York?" or "Show
me the worst employees by office." The linguistic model would
translate what "best" and "worst" means to the company.

One of the amazing features you can do inside of Power BI is to

ask questions through Cortana, Windows's voice-operated
assistant. With Cortana integration enabled in the Settings tab,
your users will be able to ask questions in Windows without
logging into Power BI, and can get quick answers right from the
Start menu. To do this, the user must have their company
account (typically Office 365) associated with Windows by going
to Settings | Account in Windows. You must also connect Office
365 to Cortana as a connected service.

Subscribing to reports and
dashboards
To discourage users from printing reports and dashboards, you
can have them subscribe to the reports and dashboards instead.
This will email the report or dashboard when the data changes
on the report, typically daily or weekly. Select Subscribe in the
upper-right corner of the browser. Power BI will read the
account you're signed in with and subscribe you using that email
address. When subscribing to reports, you must select the report
page that you wish to be emailed to you. With dashboards, the
entire dashboard will be emailed.

You can also set up alerts from your mobile device to alert you
when a critical number changes on a report. While looking at a
dashboard, you can click the alert icon (it looks like a bell) to
create an alert. This will monitor the data on the report, and
upon that number hitting a certain threshold, it will send you a
phone alert and, optionally, an additional email. Alerts are great
mechanisms to let you know if a given critical number, such as a
profit margin, has fallen.

Subscriptions and alerts can be managed in the Power BI
settings area under the Alerts and Subscriptions tabs. You can
turn off alerts and subscriptions here, as well as edit the
subscriptions. By default, the frequency of subscriptions will be
whenever the data is updated, but this happens typically no more
than once per day (although this can be altered).

Sharing your dashboards
Sharing in Power BI is quite simple, but you'll want to consider
what your goal is first. If your goal is simply to share a view-only
version of a report or dashboard that users could engage with,
the basic sharing mechanism can do that. If your goal is instead
to allow users to also edit the report, you will want to use
workspaces. Lastly, if you want to logically package reports and
dashboards together, and have the ability to have fine-control
over which reports can be seen by default, consider using Power
BI apps.

The easiest way to share a dashboard or report is to simply click
Share in the upper-right corner of any report or dashboard.
Simply type the email address of the user that you want to share
with and what type of access you want to give them. While you
can't allow them to edit the report or dashboard, they will be able
to view and reshare the report themselves. At any time, you can
also see what assets are shared with you by clicking Shared with
Me from the left menu. Then, you will see a list of users that have
shared items with you. You can click on this list to filter the
report lists that are shared with you.

Workspaces
Workspaces are areas where groups of users can collaborate with
datasets, reports, and dashboards. You can create a workspace if
you have a pro license of the Power BI service. This is the main
way that your BI developers will be able to co-develop the same
sets of data and reports. Typically, you'll create a workspace for
each department in your company for the teams to store their
items and data.

To create one, simply expand the Workspaces section in the left
navigation menu and click Create App Workspace. Name the
workspace that you wish to create and define whether members
can edit the content or just view the content, as shown in the
following screenshot. You can also define whether users will be
able to see the content of what's inside the workspace without
being a member. This doesn't mean they'll be able to see the
reports, but they will be able to see the metadata. If you're
running the Power BI premium edition, you can also assign the
dedicated capacity to a given workspace.

This is handy for those executive reports that must always return
their visuals in a few seconds:

At any time, you can change the permissions or add users by editing the
workspace if you have permission to do so. To do this, select the ellipsis
button next to the workspace name and click Edit Workspace.

Setting up row-level security
In most organizations, security is not just a report-level decision.
Organizations want more granular decisions, such as whether a
sales executive can only see his or her own data. Another
example is the ability for a teacher to see his or her own
students, but the school's principal can see all the teachers at
their school and the school board members can see all of the
data. This level of granularity is quite possible in Power BI, but
will require some thought ahead of time on how to lay the data
out.

To show an example of this, we'll need to go back to the Power BI
Desktop and open Chapter 5 - Visualizing Data Completed.pbix from a
previous chapter's example; this file can be downloaded from
this book's web page at http://packtpub.com. The goal of this example
is to ensure that United States sales managers can only see US
sales, and likewise for Australian sales managers. We'll only use
two countries in our example, but the same example can apply to
the entire world, and can be expanded to be made more
dynamic.

To create this type of automated filter based on your user's
credentials, you'll need to use DAX language snippets. Open the
Power BI Desktop and click Manage Roles from the Modeling
ribbon in the report. Then, click Create to make a new role called
US. Then, select Sales Territory as your table to filter on and
click Add Filter | [Sales Territory Country], as shown in the
following screenshot. This will create a stub of code in the Table
Filter DAX Expression box that shows [Sales Territory Country]
= Value. Simply replace Value with United States, and your first

http://packtpub.com

role is created. Do the same for Australia to complete the
example:

Now that we've created the two rules, let's test them out. The
Power BI desktop will not automatically filter the data for you,
since you have access to the underlying data anyway, but it can
be used to test it. Click View as Role from the Modeling tab and
select the role you wish to test. You'll notice after you click on
Australia, for example, that every report element on each report
page filters at that point to only show Australian data. Power BI

Desktop also warns you that you're filtering the data and that
you can click Stop Viewing to stop viewing as the role. Once
you're ready to see what you've done on the Power BI service,
publish to your Power BI account and open the report there.

Navigate to the dataset matching your report and select Security.
You can then select each role and type the email address of each
member of that role. Click Add and then Save to start using the
role, as shown in the following screenshot. You can also add
groups (such as your Australian Employee group) to this role if
you have one created already in Office 365's directory. After
clicking Save, members of that role will only see their own data
in dashboards, reports, and any new reports that they build from
the dataset:

If your user has edit rights to the workspace or dataset, then these roles
will not work since they already have the ability to see the underlying
data. However, roles do work if the user is connecting to Power BI
Desktop to see the data through Excel. Make sure the members of the
workspace only have View rights selected if this feature is important to
you. Additionally, when row-level security is turned on, Q&A will no
longer work as of the publication of this book.

Scheduling data refreshes
Once you have a report that everyone depends on, you're not
going to want to refresh it manually each day. The Power BI
service has the ability to refresh your datasets up to every half an
hour for the Power BI pro edition when you're not doing real-
time analysis. If all of your data lives in the cloud, refreshing is
very simple. However, if you have some data or files on premise,
you must install the on-premises gateway.

Don't forget that if you want to see data in real time, you have the option
to perform a direct query, where clicks run queries against your source
system. Doing this will slow your reports down by large factors. You can
also do real-time analysis of your data by using Azure services, such as
Stream Analytics, where elements in your dashboards refresh every
second.

The on-premises gateways can be used across multiple cloud
services, such as Power BI, PowerApps, Logic Apps, and
Microsoft Flow. You can download the free gateway from the
top-right download icon on PowerBI.com once you're signed in.
The first question that will be asked during the installation is
whether you want to install the data gateway in personal mode
or on-premises gateway mode.

The largest difference between the on-premises data gateway
and the on-premises data gateway in personal mode is that
personal mode runs as an application versus a Windows service.
By installing in personal mode, you risk your data becoming stale
if the application is not open when your PC starts. It is handy for
those users who may not have admin access to their machine, or
users who want easier data refreshes. It is recommended for ease
of management and reliability that most users install the on-
premises data gateway.

After installation, you'll need to provide your Power BI login
credentials. Next, you'll need to name your gateway and provide
a recovery key, as shown in the following screenshot. The
recovery key is used to encrypt your connection strings and your
configuration. Make sure that this key is kept in a safe place and
is backed up. If you wish to make this gateway highly available,
you can add the gateway into a cluster, allowing multiple
machines to act as a single gateway to Power BI:

With the on-premises work now complete, you will need to
complete the configuration on PowerBI.com. Click the settings
gear box from the top-right corner and select Manage Gateways.
At that point, you should see the gateways on the left. You can
add more administrators (who have permission to configure data
sources that can use this connection) in the Administrators tab.

Most importantly, you will want to test the gateway before
proceeding.

Now, we need to create a connection with each of your files or
databases that are used in your report that are on-premises.
Click the Add Data Source button from the top-left corner. Give
the data source a name that can enable you to easily identify it
later. Typically, that name should match the filename or
database name to help with debugging later. For Excel files or
any other type of files used in your report, select File from the
Data Source Type drop-down box. Then, type the full path for
the filename or a network path (UNC path). Lastly, give the
Windows credentials that are needed to access the file on the
share or folder. Once you're finalized, click Test all Connections
again to ensure you have a proper connection, as shown in the
following screenshot:

The Users tab also allows you to have a more refined control of
who can access this data source. Once you've saved those
settings, you're ready to schedule the refresh. If you wish to just
refresh the data immediately, select the ellipsis button next to
the dataset and select Refresh Now. To schedule a refresh, click
Schedule Refresh. This will take you to the dataset configuration
screen. Expand the Gateway Connection section, select Use an
On-Prem Data Gateway, and click Apply. You should see your
gateway name in this section, with a status reading Online. If you
don't see Online, check whether there are any proxy settings or
firewall issues preventing Power BI from seeing your machine.

Next, expand the Scheduled Refresh section in this Datasets tab
and switch the setting Keep Your Data Up to Date to On. You can
then schedule the refresh to occur as often as every half an hour.
Once you test the refresh, you can see the Refresh History in this
same tab to see whether the data was successfully refreshed. You
can also get email notifications of when refreshing fails.

If your data is already in Azure or OneDrive, then the on-premises
gateway is not required. You just need to make sure the firewall will
allow you to communicate with the Power BI service.

Summary
The Power BI service allows your users to see the same reports
on a web or mobile platform with the same type of interactivity
as they experience in Power BI Desktop. It also allows users to
build reports quickly, straight from a web platform. Once your
reports are deployed to the service, you can use row-level
security to see data at a granular level, allowing a sales manager
to only see their own territory. The data can also be refreshed
every 30 minutes. If you're using on-premises data sources, then
you can use the on-premises gateway to bring data from on-
premise to the cloud.

Planning Power BI Projects
In this chapter, we will walk through a Power BI project planning
process from the perspective of an organization with an on-
premises data warehouse and a supporting nightly extract-
transform-load (ETL) process but no existing SSAS servers or
IT-approved Power BI datasets. The business intelligence team
will be responsible for the development of a Power BI dataset,
including source queries, relationships, and metrics, in addition
to a set of Power BI reports and dashboards.

Almost all business users will consume the reports and
dashboards in the Power BI online service and via the Power BI
mobile apps, but a few business analysts will also require the
ability to author Power BI and Excel reports for their teams
based on the new dataset. Power BI Pro licenses and Power BI
Premium capacity will be used to support the development,
scalability, and distribution requirements of the project.

In this chapter, we will review the following topics:

Power BI deployment modes

Project discovery and ingestion

Power BI project roles

Power BI licenses

Dataset design process

Dataset planning

Import and DirectQuery datasets

Power BI deployment modes
Organizations can choose to deliver and manage their Power BI
deployment through IT and standard project workflows or to
empower certain business users to take advantage of Self-Service
BI capabilities with tools such as Power BI Desktop and Excel. In
many scenarios, a combination of IT resources, such as the On-
premises data gateway and Power BI Premium capacity, can be
combined with the business users' knowledge of requirements
and familiarity with data analysis and visualization.

Organizations may also utilize alternative deployment modes per
project or with different business teams based on available
resources and the needs of the project. The greatest value from
Power BI deployments can be obtained when the technical
expertise and governance of Corporate BI solutions are
combined with the data exploration and analysis features, which
can be made available to all users. The scalability and
accessibility of Power BI solutions to support thousands of users,
including read-only users who have not been assigned Power BI
Pro licenses, is made possible by provisioning Power BI
Premium capacity, as described in the final three chapters of this
book.

Project discovery and ingestion
A set of standard questions within a project template form can be
used to initiate Power BI projects. Business guidance on these
questions informs the BI team of the high-level technical needs
of the project and helps to promote a productive project kickoff.

By reviewing the project template, the BI team can ask the
project sponsor or relevant subject matter experts (SMEs)
targeted questions to better understand the current state and the
goals of the project.

Corporate BI
The Corporate BI delivery approach in which the BI team
develops and maintains both the Power BI dataset (data model)
and the required report visualizations is a common deployment
option, particularly for large-scale projects and projects with
executive-level sponsors or stakeholders. This is the approach
followed in this chapter and throughout this book, as it offers
maximum control over top BI objectives, such as version control,
scalability, usability, and performance.

However, as per the following Power BI deployment modes
diagram, there are other approaches in which business teams
own or contribute to the solution:

Power BI deployment modes

A Power BI dataset is a semantic data model composed of data
source queries, relationships between dimensions and fact
tables, and measurement calculations. The Power BI Desktop
application can be used to create datasets as well as merely
connect to existing datasets to author Power BI reports. The
Power BI Desktop shares the same data retrieval and modeling
engines as the latest version of SQL Server Analysis
Services (SSAS) in tabular mode and Azure Analysis Services,
Microsoft's enterprise BI modeling solution. Many BI/IT
organizations utilize Analysis Services models as the primary
data source for Power BI projects and it's possible to migrate
Power BI Desktop files (.pbix) to Analysis Services models, as
described in Chapter 19, Scaling with Premium and Analysis
Services.

Self-service approaches can benefit both IT and business teams,
as they can reduce IT resources, project timelines, and provide
the business with a greater level of flexibility as their analytical
needs change. Additionally, Power BI projects can be migrated
across deployment modes over time as required skills and
resources change. However, greater levels of self-service and
shared ownership structures can also increase the risk of
miscommunication and introduce issues of version control,
quality, and consistency.

Self-Service Visualization
In the Self-Service Visualization approach, the dataset is created
and maintained by the IT organization's BI team, but certain
business users with Power BI Pro licenses create reports and
dashboards for consumption by other users. In many scenarios,
business analysts are already comfortable with authoring reports
in Power BI Desktop (or, optionally, Excel) and can leverage
their business knowledge to rapidly develop useful visualizations
and insights. Given ownership of the dataset, the BI team can be
confident that only curated data sources and standard metric
definitions are used in reports and can ensure that the dataset
remains available, performant, and updated, or refreshed as per
business requirements.

Self-Service BI
In the Self-Service BI approach, the BI organization only
contributes essential infrastructure and monitoring, such as the
use of an On-premises data gateway and possibly Power
Premium capacity to support the solution. Since the business
team maintains control of both the dataset and the visualization
layer, the business team has maximum flexibility to tailor its own
solutions including data source retrieval, transformation, and
modeling. This flexibility, however, can be negated by a lack of
technical skills (for example, DAX measures) and a lack of
technical knowledge such as the relationships between tables in
a database. Additionally, business-controlled datasets can
introduce version conflicts with corporate semantic models and
generally lack the resilience, performance, and scalability of IT-
owned datasets.

It's usually necessary or at least beneficial for BI organizations to own
the Power BI datasets or at least the datasets which support important,
widely distributed reports and dashboards. This is primarily due to the
required knowledge of dimensional modeling best practices and the
necessary technical skills in the M and DAX functional languages to
develop sustainable datasets. Additionally, BI organizations require
control of datasets to implement row-level security (RLS) and to
maintain version control. Therefore, small datasets initially created by
business teams are often migrated to the BI team and either integrated
into larger models or rationalized given the equivalent functionality
from an existing dataset.

Choosing a deployment mode
Larger organizations with experience of deploying and managing
Power BI often utilize a mix of deployment modes depending on
the needs of the project and available resources. For example, a
Corporate BI solution with a set of standard IT developed reports
and dashboards distributed via a Power BI app may be extended
by assigning Power BI Pro licenses to certain business users who
have experience or training in Power BI report design. These
users could then leverage the existing data model and business
definitions maintained by IT to create new reports and
dashboards and distribute this content in a separate Power BI
app to distinguish ownership.

An app workspace is simply a container of datasets, reports, and
dashboards in the Power BI cloud service that can be distributed to large
groups of users. A Power BI app represents the published version of an
app workspace in the Power BI service and workspace. Members can
choose which items in the workspace are included in the published Power
BI app. See Chapter 14, Managing Application Workspaces and Content, and
Chapter 17, Creating Power BI Apps and Content Distribution, for greater
detail on app workspaces and apps, respectively.

Another common scenario is a proof-of-concept (POC) or
small-scale self-service solution developed by a business user or
a team to be transitioned to a formal, IT-owned, and managed
solution. Power BI Desktop's rich graphical interfaces at each
layer of the application (query editor, data model, and report
canvas) make it possible and often easy for users to create useful
models and reports with minimal experience and little to no
code. It's much more difficult, of course, to deliver consistent
insights across business functions (that is, finance, sales, and
marketing) and at scale in a secure, governed environment. The
IT organization can enhance the quality and analytical value of

these assets as well as provide robust governance and
administrative controls to ensure that the right data is being
accessed by the right people.

The following list of fundamental questions will help guide a
deployment mode decision:

1. Who will own the data model?

1. Experienced dataset designers and other IT
professionals are usually required to support
complex data transformations, analytical data
modeling, large data sizes, and security rules,
such as RLS roles, as described in Chapter
10, Developing DAX Measures and Security Roles

2. If the required data model is relatively small and
simple, or if the requirements are unclear, the
business team may be best positioned to create at
least the initial iterations of the model

3. The data model could be created with Analysis
Services or Power BI Desktop

2. Who will own the reports and dashboards?

1. Experienced Power BI report developers with an
understanding of corporate standards and data
visualization best practices can deliver a
consistent user experience

2. Business users can be trained in report design and
development practices and are well-positioned to
manage the visualization layer, given their
knowledge of business needs and questions

3. How will the Power BI content be managed and
distributed?

1. A staged deployment across development, test,
and production environments, as described in Chap
ter 14, Managing Application Workspaces and
Content, helps to ensure that quality, validated
content is published. This approach is generally
exclusive to Corporate BI projects.

2. Sufficient Power BI Premium capacity is required
to support distribution to Power BI Free users and
either large datasets or demanding query
workloads.

3. Self-Service BI content can be assigned to
Premium Capacity, but organizations may wish to
limit the scale or scope of these projects to ensure
that provisioned capacity is being used efficiently.

Sample Power BI project
template
The primary focus of the project-planning template and the
overall project planning stage is on the data sources and the scale
and structure of the Power BI dataset required. The project
sponsor or business users may only have an idea of several
reports, dashboards, or metrics needed but, as a Corporate BI
project, it's essential to focus on where the project fits within an
overall BI architecture and the long-term return on
investment (ROI) of the solution. For example, BI teams
would look to leverage any existing Power BI datasets or SSAS
tabular models applicable to the project and would be sensitive
to version-control issues.

Sample template – Adventure
Works BI
The template is comprised of two tables. The first table answers
the essential who and when questions so that the project can be
added to the BI team's backlog. The BI team can use this
information to plan their engagements across multiple ongoing
and requested Power BI projects and to respond to project
stakeholders, such as Vickie Jacobs, VP of Group Sales, in this
example:

Date of Submission 10/15/2017

Project Sponsor Vickie Jacobs, VP of Group Sales

Primary
Stakeholders

Adventure Works Sales
Adventure Works Corp

Power BI Author(s) Mark Langford, Sales Analytics
Manager

The following table is a list of questions that describe the
project's requirements and scope. For example, the number of

users that will be read-only consumers of Power BI reports and
dashboards, and the number of self-service users that will need
Power BI Pro licenses to create Power BI content will largely
impact the total cost of the project.

Likewise, the amount of historical data to include in the dataset
(2 years, 5 years?) can significantly impact performance
scalability:

Topic # Question Business Input

Data
sources 1

Can you
describe the

required data?
(For example,

sales,
inventory,
shipping).

Internet Sales, Reseller Sales,
and the Sales and Margin

Plan. We need to analyze
total corporate sales,
online, and reseller
sales, and compare

these results to our plan.

Data
sources 2

Is all of the
data required

for your project
available in the
data warehouse
(SQL Server)?

No

Data
Sources 3

What other
data sources (if
any) contain all

or part of the
required
data (for

example, Web,
Oracle, Excel)?

The Sales and Margin Plan is
maintained in Excel.

Security 4

Should certain
users be

prevented from
viewing some
or all of the

data?

Yes, sales managers and
associates should only
see data for their sales
territory group. VPs of
sales, however, should

have global access.

Security 5

Does the data
contain any

PCII or
sensitive data?

No, not that I’m aware
of

Scale 6

Approximately,
how many

years of
historical data

are needed?

3-4

Data
refresh 7

How often does
the data need

to be
refreshed?

Daily

Data
refresh 8

Is there a need
to view data in
real time (as it

changes)?

No

Distribution 9

Approximately,
how many

users will need
to view reports

200

and
dashboards?

Distribution 10

Approximately,
how many

users will need
to create

reports and
dashboards?

3-4

Version
control 11

Are there
existing reports

on the same
data? If so,

please describe.

Yes, there are daily and
weekly sales snapshot

reports available on the
portal. Additionally, our
team builds reports in

Excel that compare
actuals to plan.

Version
Control 12

Is the Power BI
solution

expected to
replace these

existing
reports?

Yes, we would like to
exclusively use Power BI

going forward.

A business analyst inside the IT organization can partner with
the business on completing the project ingestion template and
review the current state to give greater context to the template.
Prior to the project kickoff meeting, the business analyst can
meet with the BI team members to review the template and any
additional findings or considerations.

Many questions with greater levels of detail will be raised as the project
moves forward and therefore the template shouldn't attempt to be
comprehensive or overwhelm business teams. The specific questions to
include should use business-friendly language and serve to call out the
top drivers of project resources and Corporate BI priorities, such as
security and version control.

Power BI project roles
Following the review of the project template and input from the
business analyst, members of the Power BI team can directly
engage the project sponsor and other key stakeholders to
officially engage in the project. These stakeholders include
subject matter experts on the data source systems, business team
members knowledgeable of the current state of reporting and
analytics, and administrative or governance personnel with
knowledge of organizational policies, available licenses, and
current usage.

New Power BI projects of any significant scale and long-term
adoption of Power BI within organizations require Dataset
Designers, Report Authors, and a Power BI Admin(s), as
illustrated in the following diagram:

Power BI team roles

Each of the three Power BI project roles and perhaps longer-
term roles as part of a business intelligence team entail a distinct
set of skills and responsibilities. It can be advantageous in a
short-term or POC scenario for a single user to serve as both a
dataset designer and a report author. However, the Power BI
platform and the multi-faceted nature of Corporate BI
deployments is too broad and dynamic for a single BI
professional to adequately fulfill both roles. It's therefore
recommended that team members either self-select or are
assigned distinct roles based on their existing skills and
experience and that each member develops advanced and
current knowledge relevant to their role. A BI manager and/or a
project manager can help facilitate effective communication
across roles and between the BI team and other stakeholders,
such as project sponsors.

Dataset designer
Power BI report visualizations and dashboard tiles are built on
top of datasets, and each Power BI report is associated with a
single dataset. Power BI datasets can import data from multiple
data sources on a refresh schedule or can be configured to issue
queries directly to a single data source to resolve report queries.
Datasets are therefore a critical component of Power BI projects
and their design has tremendous implications regarding user
experience, query performance, source system and Power BI
resource utilization, and more.

The dataset designer is responsible for the data access layer of
the Power BI dataset, including the authentication to data
sources and the M queries used to define the tables of the data
model. Additionally, the dataset designer defines the
relationships of the model and any required row-level security
roles, and develops the DAX measure expressions for use in
reports, such as year-to-date (YTD) sales. Given these
responsibilities, the dataset designer should regularly
communicate with data source owners or SMEs, as well as report
authors. For example, the dataset designer needs to be aware of
changes to data sources so that data access queries can be
revised accordingly and report authors can advise of any
additional measures or columns necessary to create new reports.
Furthermore, the dataset designer should be aware of the
performance and resource utilization of deployed datasets and
should work with the Power BI admin on issues such as Power BI
Premium capacity.

As per the Power BI team toles diagram, there are usually very

few dataset designers in a team while there may be many report
authors. This is largely due to the organizational objectives of
version control and reusability, which leads to a small number of
large datasets. Additionally, robust dataset development requires
knowledge of the M and DAX functional programming
languages, dimensional modeling practices, and business
intelligence. Database experience is also very helpful. If multiple
dataset designers are on a team they should look to standardize
their development practices so that they can more easily learn
and support each other's solutions.

A Power BI dataset designer often has experience in developing SSAS
models, particularly SSAS tabular models. For organizations utilizing
both SSAS and Power BI Desktop, this could be the same individual.
Alternatively, users with experience of building models in Power Pivot
for Excel may also prove to be capable Power BI dataset designers.

Report authors
Report authors interface directly with the consumers of reports
and dashboards or a representative of this group. In a self-
service deployment mode or a hybrid project (business and IT), a
small number of report authors may themselves work within the
business. Above all else, report authors must have a clear
understanding of the business questions to be answered and the
measures and attributes (columns) needed to visually analyze
and answer these questions. The report author should also be
knowledgeable of visualization best practices, such as symmetry
and minimalism, in addition to any corporate standards for
report formatting and layout.

Power BI Desktop provides a rich set of formatting properties
and analytical features, giving report authors granular control
over the appearance and behavior of visualizations.

Report authors should be very familiar with all standard
capabilities, such as conditional formatting, drilldown,
drillthrough, and cross-highlighting, as they often lead
demonstrations or training sessions. Additionally, report authors
should understand the organization's policies on custom visuals
available in the MS Office store and the specific use cases for top
or popular custom visuals.

Power BI admin
A Power BI admin is focused on the overall deployment of Power
BI within an organization in terms of security, governance, and
resource utilization. Power BI admins are not involved in the
day-to-day activities of specific projects but rather configure and
manage settings in Power BI that align with the organization's
policies. A Power BI admin, for example, monitors the adoption
of Power BI content, identifies any high-risk user activities, and
manages any Power BI Premium capacities that have been
provisioned. Additionally, Power BI admins use Azure Active
Directory security groups within the Power BI admin portal to
manage access to various Power BI features, such as sharing
Power BI content with external organizations.

Users assigned to the Power BI service administrator role obtain
access to the Power BI admin portal and the rights to configure
Power BI Tenant settings. For example, in the following
image, Anna Sanders is assigned to the Power BI service
administrator role within the Office 365 admin center:

Assigning Power BI service admin role

The Power BI service administrator role allows Anna to
access the Power BI admin portal to enable or disable features,
such as exporting data and printing reports and dashboard. BI
and IT managers that oversee Power BI deployments are often
assigned to this role, as it also provides the ability to manage
Power BI Premium capacities and access to standard monitoring
and usage reporting. Note that only global administrators of
Office 365 can assign users to the Power BI service administrator
role.

The Power BI admin should have a clear understanding of the
organizational policy on the various tenant settings, such as
whether content can be shared with external users. For most
tenant settings, the Power BI service administrator can define
rules in the Power BI admin portal to include or exclude specific
security groups. For example, external sharing can be disabled
for the entire organization except for a specific security group of
users. Most organizations should assign two or more users to the
Power BI service administrator role and ensure these users are
trained on the administration features specific to this role. Chapter

18, Administering Power BI for an Organization, contains
details on the Power BI admin portal and other administrative
topics.

Project role collaboration
Communicating and documenting project role assignments
during the planning stage promotes the efficient use of time
during the development and operations phases. For
organizations committed to the Power BI platform as a
component of a longer-term data strategy, the project roles may
become full-time positions.

For example, BI developers with experience in DAX and/or SSAS
tabular databases may be hired as dataset designers while BI
developers with experience in data visualization tools and
corporate report development may be hired as report authors:

Name Project role

Brett Powell Dataset Designer

Jennifer Lawrence Report Author

Anna Sanders Power BI Service Admin

Mark Langford Report Author

Stacy Loeb QA Tester

Power BI licenses
Users can be assigned either a Power BI Free or a Power BI Pro
license. Power BI licenses (Pro and Free) can be purchased
individually in the Office 365 admin center, and a Power Pro
license is included with an Office 365 Enterprise E5 subscription.
A Power BI Pro license is required to publish content to Power BI
app workspaces, consume a Power BI app that's not assigned to
Power BI Premium capacity, and utilize other advanced features,
as shown in the following table:

Feature Power BI
Free

Power BI
Pro

Connect to 70+ data sources Yes Yes

Publish to web Yes Yes

Peer-to-peer sharing No Yes

Export to Excel, CSV, PowerPoint Yes Yes

Email subscriptions No Yes

App workspaces and apps No Yes

Analyze in Excel, Analyze in
Power BI Desktop No Yes

With Power BI Premium, users with Power BI Free licenses are
able to access and view Power BI apps of reports and dashboards
that have been assigned to premium capacities. This access
includes consuming the content via the Power BI mobile
application. Additionally, Power BI Pro users can share
dashboards with Power BI Free users if the dashboard is
contained in a Premium workspace. Power BI Pro licenses are
required for users that create or distribute Power BI content,
such as connecting to published datasets from Power BI Desktop
or Excel.

In this sample project example, only three or four business users
may need Power BI Pro licenses to create and share reports and
dashboards. Mark Langford, a data analyst for the sales
organization, requires a Pro license to analyze published datasets
from Microsoft Excel. Jennifer Lawrence, a Corporate BI
developer and report author for this project, requires a Pro
license to publish Power BI reports to app workspaces and
distribute Power BI apps to users.

The following image from the Office 365 admin center identifies

the assignment of a Power BI Pro license to a report author:

Power BI Pro license assignment

As a report author, Jennifer doesn't require any custom role
assignment as per the Roles property of the preceding image. If
Jennifer becomes responsible for administering Power BI in the
future, the Edit option for the Roles property can be used to
assign her to the Power BI service administrator role, as
described in the Power BI project roles section earlier.

The approximately 200 Adventure Works sales team users who
only need to view the content can be assigned Free licenses and
consume the published content via Power BI apps associated
with Power BI Premium capacity. Organizations can obtain more
Power BI Pro licenses and Power BI Premium capacity (virtual
cores, RAM) as usage and workloads increase.

Typically, a Power BI service administrator is also assigned a Power BI
Pro license, but a Power BI Pro license is not required to be assigned to
the Power BI service administrator role.

The administration and governance of Power BI deployments at
scale involve several topics (such as authentication, activity
monitoring, and auditing), and Power BI provides features
dedicated to simplifying administration.

These topics and features are reviewed in Chapter
18, Administering Power BI for an Organization.

Given the broad controls associated with the Power BI service
administrator role, such as managing Power BI Premium capacities and
setting policies for the sharing of external content, some organizations
may choose to limit this access to defined time periods. Azure Active
Directory Privileged Identity Management (PIM) can be used to
provide short-term, audited access to this role. For example, a decision
could be made to allow one security group of users to export data from
Power BI. A user, such as a BI manager, could be granted Power BI
service administrator rights for one day to implement this policy in the
Power BI admin portal.

Power BI license scenarios
The optimal mix of Power BI Pro and Power BI Premium
licensing in terms of total cost will vary based on the volume of
users and the composition of these users between read-only
consumers of content versus Self-Service BI users. In relatively
small deployments, such as 200 total users, a Power BI Pro
license can be assigned to each user regardless of self-service
usage and Power BI Premium capacity can be avoided. Be
advised, however, that, as per the following Power BI Premium
features section, there are other benefits to licensing Power BI
Premium capacity that may be necessary for certain
deployments, such as larger datasets or more frequent data
refreshes.

If an organization consists of 700 total users with 600 read-only
users and 100 self-service users (content creators), it's more cost
effective to assign Power BI Pro licenses to the 100 self-service
users and to provision Power BI Premium capacity to support
the other 600 users. Likewise, for a larger organization with
5,000 total users and 4,000 self-service users, the most cost-
effective licensing option is to assign Power Pro licenses to the
4,000 self-service users and to license Power BI Premium for the
remaining 1,000 users.

Several factors drive the amount of Power BI Premium capacity to
provision, such as the number of concurrent users, the complexity of the
queries generated, and the number of concurrent data refreshes. The
Power BI Premium calculator provides an initial estimate of the mix of
Power BI Pro and Power BI Premium capacity needed for a given
workload and can be found at https://powerbi.microsoft.com/en-us/calculator/.

See Chapter 18, Administering Power BI for an Organization, and
Chapter 19, Scaling with Premium and Analysis Services, for

https://powerbi.microsoft.com/en-us/calculator/

additional details on aligning Power BI licenses and resources
with the needs of Power BI deployments.

Power BI Premium features
An organization may choose to license Power BI Premium
capacities for additional or separate reasons beyond the ability to
distribute Power BI content to read-only users without incurring
per-user license costs. Significantly, greater detail on Power BI
Premium features and deployment considerations is included in
Chapter 19, Scaling with Premium and Analysis Services.

The following table identifies several of the top additional
benefits and capabilities of Power BI Premium:

Additional Power BI Premium capabilities
Beyond the six features listed in the preceding table, the roadmap
included in the Power BI Premium white paper has advised of future
capabilities including read-only replicas, pin to memory, and geographic
distribution. See the Power BI Premium white paper (http://bit.ly/2wBGPRJ)
and related documentation for the latest updates.

http://bit.ly/2wBGPRJ

Data warehouse bus matrix
The fundamentals of the dataset should be designed so that it
can support future BI and analytics projects and other business
teams requiring access to the same data. The dataset will be
tasked with delivering both accurate and consistent results
across teams and use cases as well as providing a familiar and
intuitive interface for analysis.

To promote reusability and project communication, a data
warehouse bus matrix of business processes and shared
dimensions is recommended:

Data warehouse bus matrix

Each row reflects an important and recurring business process,
such as the monthly close of the general ledger, and each column
represents a business entity, which may relate to one or several
of the business processes. The shaded rows (Internet Sales, Reseller
Sales, and Sales Plan) identify the business processes that will be
implemented as their own star schemas for this project. The
business matrix can be developed in collaboration with business
stakeholders, such as the corporate finance manager, as well as
source system and business intelligence or data warehouse
SMEs.

The data warehouse bus matrix is a staple of the Ralph Kimball data
warehouse architecture, which provides an incremental and integrated
approach to data warehouse design. This architecture, as per The Data
Warehouse Toolkit (Third Edition) by Ralph Kimball, allows for scalable
data models, as multiple business teams or functions often require access
to the same business process data and dimensions.

Additional business processes, such as maintaining product
inventory levels, could potentially be added to the same Power
BI dataset in a future project. Importantly, these future additions
could leverage existing dimension tables, such as a Product
table, including its source query, column metadata, and any
defined hierarchies.

Each Power BI report is tied to a single dataset. Given this 1:1
relationship and the analytical value of integrated reports across
multiple business processes, such as Inventory and Internet Sales, it's
important to design datasets that can scale to support multiple star
schemas. Consolidating business processes into one or a few datasets
also makes solutions more manageable and a better use of source system
resources, as common tables (for example, Product, Customer) are only
refreshed once.

Dataset design process
With the data warehouse bus matrix as a guide, the business
intelligence team can work with representatives from the
relevant business teams and project sponsors to complete the
following four-step dataset design process:

1. Select the business process.
2. Declare the grain.
3. Identify the dimensions.
4. Define the facts.

Selecting the business process
Ultimately each business process will be represented by a fact
table with a star schema of many-to-one relationships to
dimensions. In a discovery or requirements gathering process it
can be difficult to focus on a single business process in isolation
as users regularly analyze multiple business processes
simultaneously or need to. Nonetheless, it's essential that the
dataset being designed reflects low level business activities (for
example, receiving an online sales order) rather than a
consolidation or integration of distinct business processes such
as a table with both online and reseller sales data:

Confirm that the answer provided to the first question of
the project template regarding data sources is accurate:

In this project, the required business processes
are Internet Sales, Reseller Sales, Annual Sales and Margin
Plan

Each of the three business processes corresponds
to a fact table to be included in the Power BI
dataset

Obtain a high-level understanding of the top business
questions each business process will answer:

For example, "What are total sales relative to the

Annual Sales Plan and relative to last year?"

In this project, Internet Sales and Reseller Sales will be
combined into overall corporate sales and margin
KPIs

Optionally, reference the data warehouse bus matrix of
business processes and their related dimensions:

For example, discuss the integration of inventory
data and the insights this integration may provide

In many projects, a choice or compromise has to
be made given the limited availability of certain
business processes and the costs or timelines
associated with preparing this data for production
use:

Additionally, business processes (fact
tables) are the top drivers of the storage
and processing costs of the dataset and
thus should only be included if necessary.

A common anti-pattern to avoid in Power BI projects is the development
of datasets for specific projects or teams rather than business processes.
For example, one dataset would be developed exclusively for the
marketing team and another dataset would be created for the sales
organization. Assuming both teams require access to the same sales
data, this approach naturally leads to a waste of resources, as the same
sales data would be queried and refreshed twice and both datasets would
consume storage resources in the Power BI service. Additionally, this
isolated approach leads to manageability and version control issues, as
the datasets may contain variations in transformation or metric logic.
Therefore, although the analytical needs of specific business users or

teams are indeed the priority of BI projects, it's important to plan for
sustainable solutions that can ultimately be shared across teams.

Declaring the grain
All rows of a fact table should represent the individual business
process from step 1 at a certain level of detail or grain such as the
header level or line level of a purchase order. Therefore, each
row should have the same meaning and thus contain values for
the same key columns to dimensions and the same numeric
columns.

The grain of fact tables ultimately governs the level of detail
available for analytical queries as well as the amount of data to
be accessed:

Determine what each row of the different business
processes will represent:

For example, each row of the Internet Sales fact
table represents the line of a sales order from a
customer

The rows of the Sales and Margin Plan, however, are
aggregated to the level of a Calendar Month, Products
Subcategory, and Sales Territory Region

If it's necessary to apply filters or logic to treat certain rows of a fact
table differently than others, the fact table likely contains multiple
business processes (for example, shipments and orders) that should be
split into separate tables. Although it's technically possible to build this
logic into DAX measure expressions, well-designed fact tables benefit
Power BI and other data projects and tools over the long term. The same
metrics and visualizations can be developed via separate fact tables with

their own relationships rather than consolidated fact tables.

Review and discuss the implications of the chosen grain
in terms of dimensionality and scale:

Higher granularities provide greater levels of
dimensionality and thus detail but result in much
larger fact tables

If a high grain or the maximum grain is chosen,
determine the row counts per year and the storage
size of this table once loaded into Power BI
datasets

If a lower grain is chosen, ensure that project
stakeholders understand the loss of
dimensionalities, such as the inability to filter for
specific products or customers

In general, a higher granularity is recommended for analytical power
and sustainability. If a less granular design is chosen, such as the header
level of a sales order, and this grain later proves to be insufficient to
answer new business questions, then either a new fact table would have
to be added to the dataset or the existing fact table and all of its
measures and dependent reports would have to be replaced.

Identifying the dimensions
The dimensions to be related to the fact table are a natural
byproduct of the grain chosen in step 2 and thus largely impact
the decision in step 2. A single sample row from the fact table
should clearly indicate the business entities (dimensions)
associated with the given process such as the customer who
purchased an individual product on a certain date and at a
certain time via a specific promotion. Fact tables representing a
lower grain will have fewer dimensions.

For example, a fact table representing the header level of a
purchase order may identify the vendor but not the individual
products purchased from the vendor:

Identify and communicate the dimensions that can be
used to filter (aka slice and dice) each business process:

The foreign key columns based on the grain
chosen in the previous step reference dimension
tables.

Review a sample of all critical dimension tables,
such as Product or Customer, and ensure these
tables contain the columns and values necessary
or expected.

Communicate which dimensions can be used to filter

multiple business processes simultaneously:

In this project, the Product, Sales Territory,
and Date dimensions can be used to filter all
three fact tables.

The data warehouse bus matrix referenced earlier
can be helpful for this step

Look for any gap between the existing dimension tables
and business questions or related reports:

For example, existing IT-supported reports may
contain embedded logic that creates columns via
SQL which are not stored in the data warehouse

Strive to maintain version control for dimension tables
and the columns (attributes) within dimension tables:

It may be necessary for project stakeholders to
adapt or migrate from legacy reports or an
internally maintained source to the Corporate BI
source

A significant challenge to the identity of the dimensions step can
be a lack of Master Data Management (MDM) and
alternative versions. For example, the sales organization may
maintain their own dimension tables in Excel or Microsoft
Access and their naming conventions and hierarchy structures

may represent a conflict or gap with the existing data warehouse.
Additionally, many corporate applications may store their own
versions of common dimensions, such as products and
customers. These issues should be understood and, despite
pressure to deliver BI value quickly or according to a specific
business team's preferred version, the long-term value of a single
definition for an entire organization as expressed via the bus
matrix should not be sacrificed.

Defining the facts
The facts represent the numeric columns to be included in the
fact table. While the dimension columns from step 3 will be used
for relationships to dimension tables, the fact columns will be
used in measures containing aggregation logic such as the sum of
a quantity column and the average of a price column:

Define the business logic for each fact that will be
represented by measures in the dataset:

For example, gross sales are equal to the extended
amount on a sales order, and net sales are equal
to gross sales minus discounts

Any existing documentation or relevant technical
metadata should be reviewed and validated

Similar to the dimensions, any conflicts between existing
definitions should be addressed so that a single definition
for a core set of metrics is understood and approved

Additionally, a baseline or target source should be
identified to validate the accuracy of the metrics to be
created.

For example, several months following the

project, it should be possible to compare the
results of DAX measures from the Power BI
dataset to an SSRS report or a SQL query

If no variance exists between the two sources, the
DAX measures are valid and thus any doubt or
reported discrepancy is due to some other factor

See Chapter 8, Connecting to Sources and Transforming Data with M, Chapter
9, Designing Import and DirectQuery Data Models, and Chapter
10, Developing DAX Measures and Security Roles, for details on the fact
table columns to include in Power BI datasets (for import or
DirectQuery) and the development of DAX metric expressions. The fact
definitions from this step relate closely to the concept of base measures
described in Chapter 10, Developing DAX Measures and Security Roles.
Ultimately, the DAX measures implemented have to tie to the approved
definitions, but there are significant data processing, storage and
performance implications based on how this logic is computed. In many
cases, the Power BI dataset can provide the same logic as an existing
system but via an alternative methodology that better aligns with Power
BI or the specific project need.

Data profiling
The four-step dataset design process can be immediately
followed by a technical analysis of the source data for the
required fact and dimension tables of the dataset. Technical
metadata, including database diagrams and data profiling
results, such as the existence of null values in source columns,
are essential for the project planning stage. This information is
used to ensure the Power BI dataset reflects the intended
business definitions and is built on a sound and trusted source.

For example, the following SQL Server database diagram
describes the schema for the reseller sales business process:

SQL Server Database diagram: reseller sales

The foreign key constraints identify the surrogate key columns to
be used in the relationships of the Power BI dataset and the
referential integrity of the source database. In this schema, the
product dimension is modeled as three separate dimension
tables—DimProduct, DimProductSubcategory, and DimProductCategory. Given
the priorities of usability, manageability, and query performance,
a single denormalized product dimension table that includes
essential Product Subcategory and Product Category columns is generally
recommended. This will reduce the volume of source queries,
relationships, and tables in the data model and will improve
report query performance, as fewer relationships will need to be
scanned by the dataset engine.

Clear visibility to the source system, including referential and
data integrity constraints, data quality, and any MDM processes,
is essential. Unlike other popular BI tools, Power BI is capable of
addressing many data integration and quality issues, particularly
with relational database sources which Power BI can leverage to
execute data transformation operations. However, Power BI's
ETL capabilities are not a substitute for data warehouse
architecture and enterprise ETL tools, such as SQL Server
Integration Services (SSIS). For example, it's the
responsibility of the data warehouse to support historical
tracking with slowly changing dimension ETL processes that
generate new rows and surrogate keys for a dimension when
certain columns change. To illustrate a standard implementation
of slowly changing dimensions, the following query of the
DimProduct table in the Adventure Works data warehouse returns
three rows for one product (FR-M94B-38):

Historical tracking of dimensions via slowly changing dimension ETL processes

It's the responsibility of the Power BI team and particularly the
dataset designer to accurately reflect this historical tracking via
relationships and DAX measures, such as the count of distinct
products not sold. Like historical tracking, the data warehouse
should also reflect all master data management processes that
serve to maintain accurate master data for essential dimensions,
such as customers, products, and employees. In other words,
despite many lines of business applications and ERP, CRM,
HRM, and other large corporate systems which store and process
the same master data, the data warehouse should reflect the
centrally governed and cleansed standard. Creating a Power BI
dataset which only reflects one of these source systems may later

introduce version control issues and, similar to choosing an
incorrect granularity for a fact table, can ultimately require
costly and invasive revisions.

Different tools are available with data profiling capabilities. If
the data source is the SQL Server, SSIS can be used to analyze
source data to be used in a project.

In the following image, the Data Profiling Task is used in an SSIS
package to analyze the customer dimension table:

Data Profiling Task in SQL Server integration services
The Data Profiling Task requires an ADO.NET connection to the data
source and can write its output to an XML file or an SSIS variable. In
this example, the ADO.NET data source is the Adventure Works data
warehouse database in SQL Server 2016 and the destination is an XML
file (DataProfilingData.xml). Once the task is executed, the XML file can be
read via the SQL Server Data Profile Viewer as per the following
example. Note that this application, Data Profile Viewer, requires an
installation of the SQL Server and that the Data Profiling Task only
works with SQL Server data sources.

All fact and dimension table sources can be analyzed quickly for

the count and distribution of unique values, the existence of null
values, and other useful statistics.

Each data profiling task can be configured to write its results to
an XML file on a network location for access via tools such as the
Data Profile Viewer. In this example, the Data Profile Viewer is
opened from within SSIS to analyze the output of the Data
Profiling Task for the Customer dimension table:

Data Profile Viewer: column null ratio profiles of DimCustomer table

Identifying and documenting issues in the source data via data
profiling is a critical step in the planning process. For example,
the cardinality or count of unique values largely determines the
data size of a column in an import mode dataset. Similarly, the
severity of data quality issues identified impacts whether a
DirectQuery dataset is a feasible option.

Dataset planning
After the source data has been profiled and evaluated against the
requirements identified in the four-step dataset design process,
the BI team can further analyze the implementation options for
the dataset. In almost all Power BI projects, even with significant
investments in enterprise data warehouse architecture and ETL
tools and processes, some level of additional logic, integration, or
transformation is needed to enhance the quality and value of the
source data or to effectively support a business requirement. A
priority of the dataset, planning stage is to determine how the
identified data transformation issues will be addressed to
support the dataset. Additionally, based on all available
information and requirements, the project team must determine
whether to develop an import mode dataset or a DirectQuery
dataset.

Data transformations
To help clarify the dataset planning process, a diagram such as
the following can be created that identifies the different layers of
the data warehouse and Power BI dataset where transformation
and business logic can be implemented:

Dataset planning architecture

In some projects, minimal transformation logic is needed and
can be easily included in the Power BI dataset or the SQL views
accessed by the dataset. For example, if only a few additional
columns are needed for a dimension table and there's
straightforward guidance on how these columns should be
computed, the IT organization may choose to implement these

transformations within Power BI's M queries rather than revise
the data warehouse, at least in the short term.

If a substantial gap between BI needs and the corporate data warehouse
is allowed to persist and grow due to various factors, such as cost,
project expediency, and available data warehouse skills, then Power BI
datasets will become more complex to build and maintain. Dataset
designers should regularly analyze and communicate the implications of
datasets assuming greater levels of complexity.

However, if the required transformation logic is complex or
extensive with multiple join operations, row filters, and data type
changes, then the IT organization may choose to implement
essential changes in the data warehouse to support the new
dataset and future BI projects. For example, a staging table and a
SQL stored procedure may be needed to support a revised
nightly update process or the creation of an index may be needed
to deliver improved query performance for a DirectQuery
dataset.

Ideally, all required data transformation and shaping logic could
be implemented in the source data warehouse and its ETL
processes so that Power BI is exclusively used for analytics and
visualization. However, in the reality of scarce IT resources and
project delivery timelines, typically at least a portion of these
issues must be handled through other means, such as SQL view
objects or Power BI's M query functions.

A best practice is to implement data transformation operations within
the data warehouse or source system. This minimizes the resources
required to process an import mode dataset and, for DirectQuery
datasets, can significantly improve query performance, as these
operations would otherwise be executed during report queries. For many
common data sources, such as Oracle and Teradata, M query
expressions are translated into equivalent SQL statements (if possible)
and these statements are passed back to the source system via a process
called Query Folding. See Chapter 8, Connecting to Sources and
Transforming Data with M, for more details on query folding.

As per the dataset planning architecture diagram, a layer of SQL

views should serve as the source objects to datasets created with
Power BI Desktop. By creating a SQL view for each dimension
and fact table of the dataset, the data source owner or
administrator is able to identify the views as dependencies of the
source tables and is, therefore, less likely to implement changes
that would impact the dataset without first consulting the BI
team. Additionally, the SQL views improve the availability of the
dataset, as modifications to the source tables will be much less
likely to cause the refresh process to fail.

As a general rule, the BI team and IT organization will want to
avoid the use of DAX for data transformation and shaping logic,
such as DAX calculated tables and calculated columns. The
primary reason for this is that it weakens the link between the
dataset and the data source, as these expressions are processed
entirely by the Power BI dataset after source queries have been
executed. Additionally, the distribution of transformation logic
across multiple layers of the solution (SQL, M, DAX) causes
datasets to become less flexible and manageable. Moreover,
tables and columns created via DAX do not benefit from the
same compression algorithms applied to standard tables and
columns and thus can represent both a waste of resources as well
as a performance penalty for queries accessing these columns.

In the event that required data transformation logic cannot be
implemented directly in the data warehouse or its ETL or
extract-load-transform (ELT) process, a second alternative
is to build this logic into the layer of SQL views supporting the
Power BI dataset. For example, a SQL view for the product
dimension could be created that joins the Product, Product Subcategory,
and Product Category dimension tables, and this view could be
accessed by the Power BI dataset. As a third option, M functions
in the Power BI query expressions could be used to enhance or
transform the data provided by the SQL views. See Chapter
8, Connecting to Sources and Transforming Data with M, for

details on these functions and the Power BI data access layer
generally.

DirectQuery mode
A DirectQuery dataset is limited to a single data source and
serves as merely a thin semantic layer or interface to simplify the
report development and data exploration experience.
DirectQuery datasets translate report queries into compatible
queries for the data source and leverage the data source for
query processing, thus eliminating the need to store and refresh
an additional copy of the source data.

A common use case of Power BI and SSAS Tabular DirectQuery
datasets is to provide reporting on top of relatively small
databases associated with OLTP applications. For example, if
SQL Server 2016 or later is used as the relational database for an
OLTP application, nonclustered columnstore indexes can be
applied to several tables needed for analytics. Since nonclustered
indexes are updateable in SQL Server 2016, the database engine
can continue to utilize existing indexes to process OLTP
transactions, such as a clustered index on a primary key column
while the nonclustered columnstore index will be used to deliver
performance for the analytical queries from Power BI. The
business value of near real-time access to the application can be
further enhanced with Power BI features, such as data-driven
alerts and notifications.

Sample project analysis
As per the data refresh questions from the project template (#7-
8), the Power BI dataset only needs to be refreshed daily—there's
not a need for real-time visibility of the data source. From a
dataset design perspective, this means that the default import
mode is sufficient for this project in terms of latency or data
freshness. The project template also advises that an Excel file
containing the Annual Sales Plan must be included in addition to the
historical sales data in the SQL Server data warehouse.
Therefore, unless the Annual Sales Plan data can be migrated to the
same SQL Server database containing the Internet Sales and Reseller
Sales data, an import mode dataset is the only option.

The data security requirements from the project template can be
implemented via simple security roles and therefore do not materially
impact the import or DirectQuery decision. DirectQuery datasets can
support dynamic or user-based security models as well but, given
restrictions on the DAX functions that can be used in security roles for
DirectQuery datasets, import mode datasets can more easily support
complex security requirements. However, depending on the data source
and the security applied to that source relative to the requirements of the
project, organizations may leverage existing data source security
through a DirectQuery dataset via a single sign-on with Kerberos
delegation.

Finally, the BI team must also consider the scale of the dataset
relative to size limitations with import mode datasets. As per the
project template (#6), 3–4 years of sales history needs to be
included, and thus the dataset designer needs to determine the
size of the Power BI dataset that would store that data. For
example, if Power BI Premium capacity is not available, the
PBIX dataset is limited to a max size of 1 GB. If Power BI
Premium capacity is available, large datasets (for example, 10
GB+) potentially containing hundreds of millions of rows can be

published to the Power BI service.

The decision for this project is to develop an import mode
dataset and to keep the Excel file containing the Annual Sales Plan
on a secure network location. The BI team will develop a layer of
views to retrieve the required dimension and fact tables from the
SQL Server database as well as connectivity to the Excel file. The
business will be responsible for maintaining the following Annual
Sales Plan Excel file in its current schema, including any row
updates and the insertion of new rows for future plan years:

Annual Sales Plan in Excel data table

By using the existing Excel file for the planned sales and margin
data rather than integrating this data into the data warehouse,
the project is able to start faster and maintain continuity for the
business team responsible for this source. Similar to
collaboration with all data source owners, the dataset designer
could advise the business user or team responsible for the sales
plan on the required structure and the rules for maintaining the
data source to allow for integration into Power BI. For example,
the name and directory of the file, as well as the column names
of the Excel data table, cannot be changed without first
communicating these requested revisions.

Additionally, the values of the Sales Territory Region, Product
Subcategory, and Calendar Yr-Mo columns must remain aligned with
those used in the data warehouse to support the required actual
versus plan visualizations.

The sales plan includes multiple years and represents a
granularity of the month, sales territory region, and product

subcategory. In other words, each row represents a unique
combination of values from the Calendar Yr-Mo, Sales Territory Region,
and Product Subcategory columns. The Bridge tables section in Chapter
9, Designing Import and DirectQuery Data Models, describes
how these three columns are used in integrating the Sales Plan
data into the dataset containing Internet Sales and Reseller Sales
data.

Summary
In this chapter, we've walked through the primary elements and
considerations in planning a Power BI project. A standard and
detailed planning process inclusive of the self-service capabilities
needed or expected, project roles and responsibilities, and the
design of the dataset can significantly reduce the time and cost to
develop and maintain the solution. With a sound foundation of
business requirements and technical analysis, a business
intelligence team can confidently move forward into a
development stage.

In the next chapter, the two data sources identified in this
chapter (SQL Server and Excel) will be accessed to begin
development of an import mode dataset. Source data will be
retrieved via Power BI's M language queries to retrieve the set of
required fact and dimension tables. Additionally, several data
transformations and query techniques will be applied to enhance
the analytical value of the data and the usability of the dataset.

Connecting to Sources and
Transforming Data with M
This chapter follows up on the dataset planning process
described in the previous chapter by implementing M queries in
a new Power BI Desktop file to retrieve the required fact and
dimension tables. Parameters and variables are used to access a
set of SQL views reflecting the data warehouse tables inside a
SQL Server database and the Annual Sales Plan data contained in an
Excel workbook. Additional M queries are developed to support
relationships between the sales plan and dimension tables and to
promote greater usability and manageability of the dataset.

Three examples of implementing data transformations and logic
within M queries, such as the creation of a dynamic customer
history segment column, are included. Finally, tools for editing
and managing M queries, such as extensions for Visual Studio
and Visual Studio Code, are reviewed.

In this chapter, we will review the following topics:

Query design per dataset mode

Data sources

Power BI Desktop options

SQL views

Parameters

Staging queries

Data types

Query folding

M query examples

M query editing tools

Query design per dataset mode
Many common M queries can be written for both import and
DirectQuery datasets, but with widely different implications for
the source system resources utilized and the performance of the
analytical queries from Power BI. It's essential that the mode of
the dataset (import or DirectQuery) has been determined in
advance of the development of the data access queries and that
this decision is reflected in the M queries of the dataset.

The M queries supporting a Power BI dataset import mode
should exclude, or possibly split, columns with many unique
values, such as a Transaction Number column, as these
columns consume relatively high levels of memory. A standard
design technique for import mode models is to exclude derived
fact table columns with relatively more unique values when these
values can be computed via simple DAX measure expressions
based on columns of the same table with fewer unique values.

In the following example, the SUMX() DAX function is used to
compute the Sales Amount measure based on the Order Quantity and
Unit Price columns of the Internet Sales fact table, thus avoiding the
need to import the Sales Amount column:

Internet Sales Amount (Import) =
SUMX('Internet Sales','Internet Sales'[Order Quantity]*'Internet Sales'[Unit Price])

Internet Sales Amount (DirectQuery) =
SUM('Internet Sales'[Sales Amount])

As per the second measure, the Sales Amount column would be

included in a DirectQuery data model and the DAX measure for
the sales amount would exclusively utilize this column to
generate a more efficient SQL query for the data source.

The import mode model is able to efficiently compute similar SUMX()
expressions at scale with basic arithmetic operators (+, -, *, /) as these
operations are supported by the multithreaded storage engine of the
xVelocity in-memory analytics engine. For greater detail on DAX
measures for import and DirectQuery datasets, see Chapter 10, Developing
DAX Measures and Security Roles.

The M queries supporting a DirectQuery dataset should
generally contain minimal to no transformation logic as the
complexity of the resulting SQL statement may negatively impact
the performance of Power BI report queries as well as increase
the resource usage of the data source.

This is especially important for the fact tables and any large
dimension tables of the DirectQuery dataset. Given the central
role of the data source for query performance and scalability of
DirectQuery solutions, the Power BI dataset designer should
closely collaborate with the data source owner or subject matter
expert, such as a database administrator, to make the best use of
available source system resources.

As noted in the To get the most out of this book section of the Preface, an
AdventureWorks data warehouse sample database (AdventureWorksDW2016CTP3)
hosted on a local instance of the SQL Server 2017 database engine was
the primary data source for the examples in this book. The PBIX files
included in the code bundle reference ATLAS as the name of the database
server and AdventureWorksDW as the name of the database. Therefore,
any attempt to refresh the queries within these PBIX files or create new
queries against this data source will return errors as the user doesn't
have access to this source.

Additionally, certain objects of the AdventureWorksDW database used in this

book such as views are not included in the downloadable sample
database. For this reason, the exact results depicted in this book cannot
be perfectly reproduced via a SQL Server 2017 (or later) database

instance and the sample database alone. Moreover, the code examples in
the book are intended to highlight essential concepts and use cases. The
corresponding code included in the code bundle may, for example,
include additional columns not referenced in the book as these columns
weren't essential to the given example.

Import mode dataset queries
All M queries of an import mode dataset are executed only once
per scheduled refresh. Therefore, if sufficient resources are
available during these scheduled intervals, the M queries can
contain more complex and resource-intensive operations
without negatively impacting report query performance. In fact,
well-designed data retrieval processes can benefit from report
query performance as the source data is prepped to take greater
advantage of the compression algorithms applied to import
mode datasets. The systems impacted by these retrieval
operations depend on the data source, whether the data sources
is located on-premises or in a public cloud, such as MS Azure,
and the operations of the query itself.

In this project example with an on-premises SQL Server
database, the M queries can utilize the database server's
resources during each refresh via the query folding process
described later in this chapter. In the event that certain M
expressions cannot be translated into an equivalent SQL
statement for the given source, these expressions will be
evaluated by the in-memory M engine of the On-premises data
gateway, which is installed on-premises. If the source database
was in the cloud and not within an Infrastructure-as-a-
Service (IaaS) virtual machine, a gateway would not be
required for the refresh, and resources in Power BI, such as
Power BI Premium capacity hardware, would be used to execute
any M expressions that can't be folded to a source.

For import mode datasets, M queries can be partially folded such that a
source database is used to execute only part of the required logic. For
example, an M query may contain both simple transformation steps,
such as filtering out rows, as well as more complex logic that references

a custom M function. In this scenario, a SQL statement may be generated
for the initial steps of the query, and the results of this SQL query could
be used by another system's resources, such as the On-premises data
gateway to process the remaining logic. All steps (variables) within an M
query following a step that cannot be folded are also not folded.
Likewise, any M step following a Value.NativeQuery() function that passes a
SQL statement to a source system will also not be folded. See the Query
folding section later in this chapter for more details.

DirectQuery dataset queries
For DirectQuery datasets, every M query is folded to exclusively
utilize the resources of the single data source. Therefore, certain
M functions and query logic that lack an equivalent SQL
expression for the given data source, such as Oracle or Teradata,
are not supported. In these scenarios, the dataset designer can
develop alternative M queries that produce the same target data
structure and are supported by the source system or implement
the necessary logic within the layer of SQL views supporting the
dataset.

An additional and fundamental limitation to the scope of M
queries for DirectQuery datasets is the impact on query
performance and user experience. Since the SQL statements
representing M queries must be executed by the source system
during report viewing sessions, common transformations such as
converting data types and sorting tables can cause significant
performance degradation.

Additionally, a high volume of sub-optimal SQL queries passed
from Power BI reports can quickly drive up the resource usage of
the source system. Therefore, although it's often technically
possible to implement similar data transformation logic in the
SQL views and M queries of DirectQuery datasets as with import
mode datasets, the performance and resource implications of
these transformations frequently prove unacceptable.

Dataset designers of DirectQuery datasets should document the SQL
statements generated by their M queries. As shown in the Query folding
section later in this chapter, these queries can be accessed from the View
Native Query command within the Applied Steps pane of the Power
Query Editor in Power BI Desktop. Sharing and reviewing these queries

with the data source owner, or a subject matter expert on the data source
can often lead to new ideas to improve performance or data quality. For
example, the data source owner can analyze the indexes of the source
fact table and determine whether the WHERE clause of the query can take
advantage of existing indexes.

Data sources
Data source connectivity is one of the strengths of Power BI, due
to the vast list of standard data source connectors included in
Power BI Desktop, in addition, to support for Open Database
Connectivity (ODBC) and Object Linking and
Embedding, Database (OLE DB) connections. The breadth
of data connectivity options is further bolstered by the ability for
developers to create custom Power BI data connectors for a
specific application, service, or data source. Custom data
connectors, the data retrieval processes created for all data
sources for Power BI, and other Microsoft applications are
developed with the M language.

Power BI's data connectors are consistently extended and
improved with each monthly release of Power BI Desktop. New
data sources are commonly added as a preview or beta release
feature and previous beta connectors are moved from beta to
general availability.

In the following example from the October 2017 release of Power
BI Desktop, the connector for Google BigQuery is in beta while
Amazon Redshift has been generally available since the June
2017 release:

Beta and generally-available data connectors in Power BI Desktop
Beta connectors should only be used for testing purposes, as differences
between the beta release and the subsequent generally-available
connector may cause queries dependent on the beta version to fail.

The data connector icons exposed in the Get Data graphical
interface of Power BI Desktop are associated with the data access
functions of M, such as Sql.Database().

Authentication
Power BI Desktop saves a data source credential, or sign-in
identity, for each data source connection used. These credentials
and settings are not stored in the PBIX file but rather on the local
computer specific to the given user.

An authentication dialog specific to the data source is rendered if
the user hasn't accessed the data source before or if the user has
removed existing permissions to the data source in Power BI
Desktop's Data source settings menu. In the following example,
an Sql.Database() M query function references the AdventureWorksDW
SQL Server database on the ATLAS server.

In this scenario, the user has not previously accessed this data
source (or has cleared existing source permissions), and thus
executing this query prompts the user to configure the
authentication to this source as shown in the following image:

Edit Authentication Credentials in Power BI Desktop

Most relational database sources have similar authentication
options. For SQL Server, the user can choose between the default
Windows-integrated authentication (that is, Use my current
credentials) or database authentication if the database is in
Mixed Mode. Additionally, the credentials can be saved
exclusively to the specific database or be reused for other
databases on the same server.

Data source settings
The Data source settings menu provides access to the
authentication and privacy levels configured for each data source
within the current file and the saved permissions available to all
of the user's Power BI Desktop files.

This menu can be accessed under the Edit Queries drop-down on
the Home tab of Power BI Desktop's report view or from the
Home tab of the Query Editor, as shown in the following
screenshot:

Data source settings menu in Power BI Desktop

In this example, the user chose to save the Windows
authentication to the ATLAS server rather than the specific
database (AdventureWorksDW) on the server. The Edit Permissions...
command button provides the ability to revise the
authentication, such as from Windows to database or to enter a
new username and password.

The Edit... command of the Edit Permissions menu, highlighted

in the following image, prompts the same SQL Server credential
menu that was used when originally configuring the method of
authentication to the data source:

Edit credentials accessed via Edit Permissions
Many organizations set policies requiring users to regularly revise their
usernames or passwords for certain data sources. Once these credentials
have been updated, the user should utilize the Edit Permissions menu to
ensure that the updated credentials will be used for M queries against
this data source. Depending on the security policy of the data source,
repeated failures to authenticate due to the outdated credentials saved in
Power BI Desktop can cause the user's account to be temporarily locked
out of the data source.

Privacy levels
In addition to the authentication method and user credentials for
a data source, Power BI also stores a privacy level for each data
source. Privacy levels define the isolation level of data sources
and thus restrict the integration of data sources in M queries.

For example, in the absence of privacy levels, an M query that
merges a CSV file with a publicly available online database could
result in the data from the CSV file being passed to the online
database to execute the operation. Although this default behavior
is preferable from a query performance and resource utilization
standpoint, the CSV file may contain sensitive information that
should never leave the organization or even an individual user's
machine. Applying privacy levels, such as Private for the CSV file
and Public for the online database, isolates the two sources
during query execution thus preventing unauthorized access to
sensitive data.

The privacy level of a data source can be accessed from the same
Edit Permissions dialog available in the Data source settings
menu as shown in the following screenshot:

Privacy Level options per data source

The default Privacy Level for data sources is None. Therefore,
dataset designers should revise privacy levels when first
configuring data sources in Power BI Desktop based on the
security policies for the given sources.

Four privacy levels are available:

Public: A public data source is not isolated from other
public sources, but data transfer from organizational and
private data sources to public data sources is prevented.
Public source data can be transferred to an organizational

data source but not to a private data source.

Organizational: An organizational data source is isolated
from all public data sources but is visible to other
organizational data sources. For example, if a CSV file is
marked as organizational, then a query that integrates
this source with an organizational SQL Server database
can transfer this data to the database server to execute
the query.

Private: A private data source is completely isolated from
all other data sources. Data from the private data source
will not be transferred to any other data sources, and data
from public sources will not be transferred to the private
source.

None: The privacy level applied is inherited from a
separate data source, or not applied if the separate parent
source has not been configured. For example, the privacy
level for an Excel workbook stored on a network directory
could be set to None, yet the isolation level of Private
would be enforced if a data source for the root directory
of the file is set to Private.

In this project, the Excel workbook containing the Annual Sales Plan
is not merged with any queries accessing the SQL Server data
warehouse and thus the privacy levels do not impact any queries.
However, as with all other data security issues, such as row-
level security (RLS) roles, the dataset designer should be
mindful of privacy levels and apply the appropriate setting per
data source.

Restrictive privacy levels that do not directly reject queries that can only
be executed by violating the privacy (isolation) level of a data source
may still prevent query folding from occurring and thus significantly
reduce performance and reliability. For example, if an Excel workbook is
isolated from a SQL Server data source due to a Private privacy level,
then the local resources available to the M engine will be used to execute
this operation rather than the SQL Server database engine. If the source
data retrieved from SQL Server is large enough, the resource
requirements to load this data and then execute this operation locally
could cause the query to fail.

Power BI as a data source
Over 59 distinct cloud services are available to Power BI, such as
Google Analytics and Dynamics 365. Most importantly for this
project, the Power BI online service is a fully supported data
source enabling report development in Power BI Desktop against
published datasets. As shown in the following screenshot, the
datasets contained in Power BI App Workspaces in which the
user is a member are exposed as data sources:

Power BI service data connector in Power BI Desktop
Connecting to a dataset published to Power BI establishes a Live
connection for the given report, just like connections to SQL Server
Analysis Services. With Live connections, all data retrieval and modeling
capabilities are disabled and the queries associated with report
visualizations are executed against the source database.

Leveraging published datasets as the sources for reports
provides a natural isolation between the dataset design and

report development processes. For example, a dataset designer
can implement changes to a local Power BI Desktop file (PBIX),
such as the creation of new DAX measures, and re-publish the
dataset to make these measures available to report authors.
Additionally, these connections provide report authors with
visibility to the latest successful refresh of the dataset if the
dataset is configured in import mode.

Power BI Desktop options
Dataset designers should be aware of the global and current file
settings available to manage the Power BI Desktop environment.
Among other options, these settings include the implementation
of the privacy levels described earlier, the DAX functions
available to DirectQuery datasets, auto recovery, preview
features, and whether M queries will be executed in parallel or
not.

Power BI Desktop options can be accessed from the File menu as
follows (File | Options and settings | Options):

Power BI Desktop options – GLOBAL Privacy
By setting the global Privacy Levels option to Always combine data
according to your Privacy Level settings for each source, the current file
privacy setting options are disabled. For all development and project
activities, it's recommended to apply the privacy levels established per

data source rather than each PBIX file's privacy settings.

It's outside the scope of this chapter to provide details of each
Power BI Desktop option, but the following two sections
recommend settings that are relevant to dataset design.

Global options
Global options only need to be set once and concern
fundamental settings, including data source privacy levels and
security:

1. Set the DirectQuery option to Allow unrestricted
measures in DirectQuery mode

2. Configure the security options to require user approval
for new native database queries and to use the ArcGIS
Maps for Power BI

3. Set the privacy option to always combine data according
to privacy level settings for each source

4. Configure the Power Query Editor options to display the
Query Settings pane and the Formula Bar

5. Click the OK button in the bottom-right corner of the
Options dialog to apply these settings:

1. It may be necessary to restart Power BI Desktop
for the revised settings to take effect

For DirectQuery datasets, not all DAX functions can be translated to a
SQL statement for execution by the data source. When DAX measures
use these non-optimized functions, especially against larger or unfiltered
tables, the local execution can result in poor performance. However,
when used appropriately, such as against pre-filtered or aggregated
data, unrestricted measure expressions can add to the analytical value of
the dataset without negatively impacting performance. See the official
documentation for DAX-formula compatibility with DirectQuery models
http://bit.ly/2oK8QXB.

http://bit.ly/2oK8QXB

CURRENT FILE options
The CURRENT FILE options must be set per the Power BI
Desktop file and are particularly important when creating a new
dataset:

1. Disable the automatic column type and header detection
for unstructured sources

2. Disable all relationship options, including the import of
relationships from data sources and the detection of new
relationships after data is loaded

3. Assuming a date dimension table is available to the
dataset, disable the Auto Date/Time option

4. For larger import datasets with many queries, disable the
parallel loading of tables

5. Click the OK button in the bottom-right corner of the
Options dialog to apply these settings:

Power BI Desktop Options – CURRENT FILE Data Load
The dataset designer should explicitly apply the appropriate data types
within the M queries, accessing any unstructured sources, such as Excel
files. Likewise, the dataset designer should have access to data source
documentation or subject matter experts regarding table relationships.
Furthermore, the columns and hierarchies of the dataset's date
dimension table can be used instead of the automatic internal date tables
associated with the Auto Date/Time option.

Large Power BI datasets with multiple fact tables can contain
many queries which, if executed in parallel, can overwhelm the
resources of the source system resulting in a data refresh failure.
Disabling the parallel loading of tables, therefore, improves the
availability of the dataset and reduces the impact of the refresh
process on the source server.

When Power BI Desktop is being used for report development rather

than dataset development, the Query reduction in CURRENT FILE
options can benefit the user experience. These options, including the
disabling of cross-highlighting by default and the use of an Apply button
for slicer and filter selections, result in fewer report queries being
generated. Particularly for large and DirectQuery datasets, these
options can contribute to more efficient and responsive self-service
experiences with reports.

SQL views
As described in the Dataset planning section of Chapter 7,
Planning Power BI Projects, a set of SQL views should be
created within the data source and these objects, rather than the
database tables, should be accessed by the Power BI dataset.
Each fact and dimension table required by the Power BI dataset
should have its own SQL view and its own M query within the
dataset that references this view. The SQL views should
preferably be assigned to a dedicated database schema and
identify the dimension or fact table represented as shown in the
following screenshot:

Views assigned to BI schema in SQL Server
A common practice is to create a database schema specific to the given
dataset being created or to the specific set of reports and dashboards
required for a project. However, as suggested in the Data Warehouse
Bus Matrix section of
Chapter 7, Planning Power BI Projects there shouldn't be multiple versions
of dimensions and facts across separate datasets—version control is a
top long-term deliverable for the BI team. Therefore, a single database
schema with a generic name (BI in this example) is recommended.

The existence of SQL view objects declares a dependency to
source tables that are visible to the data source owner. In the
event that a change to the source tables of a view is needed or
planned, the SQL view can be adjusted, thus avoiding any impact

to the Power BI dataset, such as a refresh failure or an
unexpected change in the data retrieved. As shown in the
following SQL Server dialog, a view (BI.vDim_Promotion) is
identified as a dependent object of the DimPromotion dimension
table:

SQL Server Object Dependencies

For mature data warehouse sources, the simple query logic
contained in each SQL view is sufficient to support the needs of
the dataset. However, with Power BI (and SSAS Tabular 2017),
BI teams can also leverage M functions to further enhance the

value of this data.

SQL views versus M queries
A common question in Power BI projects specific to data
retrieval is whether to implement any remaining transformation
logic outside the data source in SQL views, within the M queries
of the dataset, or both. For SQL Server Analysis Services
(SSAS) projects prior to SQL Server 2017, the layer of SQL views
was the only option to implement any transformations and some
BI teams may prefer this more familiar language and approach.
In other scenarios, however, the SQL views may not be accessible
or the dataset designer may have a particular strength in M
query development relative to SQL. Additionally, given the
expanded role of M queries in the Microsoft ecosystem, such
as the Common Data Service, as well as support for M query
development in Visual Studio, other BI teams may see long-term
value in M queries for lightweight data transformation needs.

Ideally, an organization's data warehouse already includes
necessary data transformations and thus minimal
transformation is required within SQL or M. In this scenario, the
M query for the table can simply reference the SQL view of the
table, which itself contains minimal to no transformations, and
inherit all required columns and logic. As a secondary
alternative, the SQL views can be modified to efficiently
implement the required logic thus isolating this code to the data
source. As a third design option, M queries can implement the
required logic and, via query folding, generate a SQL statement
for execution by the source. Yet another design option, though
less than ideal, is to implement part of the required logic in the
SQL view and the remaining logic in the M query.

The guiding principle of the data retrieval process for the import
mode dataset is to leverage the resources and architecture of the
data source. The M queries of the Power BI dataset, which access
the layer of SQL views in the source system, ultimately represent
the fact and dimension tables of the data model exposed for
report development and ad hoc analysis. This model should
address all data transformation needs, thus avoiding the need for
DAX-calculated columns and DAX-calculated tables.

Additionally, the data model in Power BI (or Analysis Services)
should remain aligned with the architecture and definitions of
the data warehouse. If a gap is created by embedding data
transformation logic (for example, new columns) into the Power
BI dataset that is not present in the data warehouse, plans
should be made to eventually migrate this logic to the data
warehouse to restore alignment.

In other words, a user or tool should be able to return the same
results of a Power BI report based on the Power BI dataset by
issuing a SQL query against the source data warehouse. This is
particularly essential in environments with other BI and
reporting tools built on top of the data warehouse.

If it's necessary to use both SQL views and M functions to implement the
data transformation logic, then both queries should be documented and,
when possible, this logic should be consolidated closer to the data source.

As shown in the Dataset Planning Architecture diagram from Cha
pter 7, Planning Power BI Projects, there are six layers in which
data logic can be implemented:

Dataset planning architecture

Data retrieval processes should strive to leverage the resources of
data sources and avoid or minimize the use of local resources.
For example, a derived column implemented within either a
SQL Views (layer 3) or within an M Queries (layer 4) which
folds its logic to the data source is preferable to a column created
by a DAX Calculated Tables and Columns (layer 5).
Likewise, if data transformation logic is included within M
queries (for example, joins, group by), it's important to ensure
these operations are being executed by the source system as
described in the Query folding section later in this chapter.
These considerations are especially critical for large tables given
the relatively limited resources (for example, CPU, Memory) of a
Power BI dataset or the On-premises data gateway if applicable.

Additionally, the dimension and fact tables of the Power BI
dataset and the DAX measures created should represent a single
version for the organization—not a customization for a specific
team or project sponsor. Therefore, although the combination of
SQL views and M queries provides significant flexibility for
implementing data transformations and logic, over time this
logic should be incorporated into corporate data warehouses and
extract-transform-load (ETL) processes so that all business
intelligence tools have access to a common data source.

Incrementally migrate transformation logic closer to the corporate data
warehouse over time. For example, a custom column that's originally
created within an M query via the Table.AddColumn() function and a
conditional expression (if...then), could first be built into the SQL view
supporting the table, thus eliminating the need for the M query logic.

In a second and final stage, the column could be added to the dimension
or fact table of the corporate data warehouse and the conditional
expression could be implemented within a standard data warehouse ETL
package or stored procedure. This final migration stage would eliminate
the need for the SQL view logic, improve the durability and performance
of the data retrieval process, and in some scenarios also increase the
feasibility of a DirectQuery dataset.

SQL view examples
Each SQL view should only retrieve the columns required for the
dimension or fact table. If necessary, the views should apply
business-friendly, unambiguous column aliases with spaces and
proper casing. Dimension table views should include the
surrogate key used for the relationship-to-fact tables, as well as
the business or natural key column if historical tracking is
maintained as will be shown by the customer dimension example
later in this section.

Fact table views should include the foreign key columns for the
relationships to the dimension tables, the fact columns needed
for measures, and a WHERE clause to only retrieve the required
rows, such as the prior three years. Given the size of many data
warehouse fact tables and the differences in how this data can
best be accessed per the Query design per dataset mode section
earlier, dataset designers should ensure that the corresponding
SQL views are efficient and appropriate for the dataset.

A robust date dimension table is critical for all datasets and thus
its SQL view and/or M query has a few unique requirements. For
example, it should include integer columns that can define the
default sort order of weekdays as well as sequentially increasing
integer columns to support date intelligence expressions. The
date table should also include a natural hierarchy of columns
(that is, Year, Year-Qtr, Year-Mo, Year-Wk) for both the Gregorian
(standard) calendar as well as any custom fiscal calendar. These
columns enable simple drill-up/down experiences in Power BI
and report visualizations at different date granularities that span
multiple time periods, such as the prior two years by week.

Given the static nature of the Date (and Time) dimension tables, their
minimal size, and their universal application in reports and dashboards,
it's usually a good use of IT/BI resources to enhance the source date table
in the data warehouse. This could include any derived columns currently
supported via SQL views or M queries as well as columns uniquely
valuable to the organization, such as company holidays. Additionally,
any dynamic columns, such as Calendar Month Status (Current Month, Prior Month)
can be computed within a SQL-stored procedure or an ETL package and
this processing can be scheduled to update the source date table daily.

Date dimension view
The following sample from a date dimension SQL view includes
several columns that will be needed by the Power BI dataset:

Sample date dimension columns

The Calendar Year Month Number column can be used to define the
default sort order of the Calendar Yr-Mo column and can also support
date intelligence DAX measure expressions that select a specific
time, frame such as the trailing four months. Likewise, a prior
calendar year date (or prior fiscal year date) column can be
referenced in date intelligence measure expressions.

The Calendar Month Status and Calendar Year Status columns make it easy
for report authors to define common filter conditions, such as
the current and prior month or the current year excluding the
current month. Additionally, since the values for these columns
are updated either by a daily job in the source database or
computed within the SQL view for the date dimension, the filter
conditions for these columns only need to be set once.

Power BI Desktop supports relative date filtering conditions for date
columns by default. Similar to the Calendar Month and Year Status columns
identified earlier, this feature is also useful in defining many common

report filter conditions, such as the last 20 days. However, the filter
conditions available in relative date filtering are not comprehensive and
typical conditions, such as all of last year and all dates from the current
year, can only be defined via the status columns. Additional details
regarding relative date filtering are available in Chapter 11, Creating and
Formatting Power BI Reports.

The following T-SQL from the date dimension view (BI.vDim_Date)
leverages the CURRENT_TIMESTAMP() function to compute two dynamic
columns (Calendar Year Status, Calendar Month Status) and the DATEPART()
function to retrieve the date rows from January 1st of three years
ago through the current date:

SELECT
 D.Date
,
 CASE
 WHEN YEAR(D.[Date]) = YEAR(CURRENT_TIMESTAMP) THEN 'Current Calendar Year'
 WHEN YEAR(D.[Date]) = YEAR(CURRENT_TIMESTAMP)-1 THEN 'Prior Calendar Year'
 WHEN YEAR(D.[Date]) = YEAR(CURRENT_TIMESTAMP)-2 THEN '2 Yrs Prior Calendar Year'
 WHEN YEAR(D.[Date]) = YEAR(CURRENT_TIMESTAMP)-3 THEN '3 Yrs Prior Calendar Year'
 ELSE 'Other Calendar Year'
 END AS [Calendar Year Status]
,
 CASE
 WHEN YEAR(D.[Date]) = YEAR(CURRENT_TIMESTAMP) AND MONTH(D.Date) = MONTH(CURRENT_TIMESTAMP) THEN 'Current Calendar Month'
 WHEN YEAR(D.[Date]) = YEAR(DATEADD(MONTH,-1,CAST(CURRENT_TIMESTAMP AS date))) AND
 MONTH(D.[Date]) = MONTH(DATEADD(MONTH,-1,CAST(CURRENT_TIMESTAMP AS date))) THEN 'Prior Calendar Month'
 WHEN YEAR(D.[Date]) = YEAR(DATEADD(MONTH,-2,CAST(CURRENT_TIMESTAMP AS date))) AND
 MONTH(D.[Date]) = MONTH(DATEADD(MONTH,-2,CAST(CURRENT_TIMESTAMP AS date))) THEN '2 Mo Prior Calendar Month'
 WHEN YEAR(D.[Date]) = YEAR(DATEADD(MONTH,-3,CAST(CURRENT_TIMESTAMP AS date))) AND
 MONTH(D.[Date]) = MONTH(DATEADD(MONTH,-3,CAST(CURRENT_TIMESTAMP AS date))) THEN '3 Mo Prior Calendar Month'
 ELSE 'Other Calendar Month'
 END AS [Calendar Month Status]
FROM
DBO.DimFinDate as D
WHERE
D.[Calendar Year] >= DATEPART(YEAR,CURRENT_TIMESTAMP)-3 AND D.Date <= CAST(CURRENT_TIMESTAMP as date);

Provided that the scheduled refresh of the import mode dataset
is successful, reports with filter conditions defined against the
dynamic date columns, such as Calendar Month Status, will be

updated automatically.

If the date columns in the SQL Server data source are only available as
integers in YYYYMMDD format, the following T-SQL expression can be used to
produce a date data type within the SQL view:

CONVERT(date,CAST(F.OrderDateKey AS nvarchar(8)),112)

However, the Mark as Date Table feature can be used to leverage
existing YYYYMMDD integer columns for date relationships, as described in the

following section.

Mark As Date Table
Most data warehouses store date columns as integers for query
performance reasons. For example, an Order Date Key column on a
fact table would store the 20180225 (YYYYMMDD) value as an integer data
type to represent February 25th, 2018. Likewise, an existing date
dimension table in the data warehouse usually also contains a
YYYYMMDD date key column to support the join to these fact tables in
SQL queries. If this date dimension table also contains a date
column and meets essential data integrity criteria, the Mark as
Date Table feature in Power BI Desktop can be used to leverage
existing integer/whole number columns representing dates for
relationships.

In the following screenshot, the Date table has been selected in
the Fields list in Power BI Desktop and the Mark as Date Table
icon has been selected from the modeling tab of the ribbon:

Mark as Date Table

As shown in the preceding screenshot, the column named Date,
which is stored as a Date data type, has been specified as the
Date column to use by the Mark as Date Table feature. Power BI
validates that this column meets the required criteria to function
properly.

In addition to relationships based on YYYYMMDD columns, this
feature enables DAX Time Intelligence functions, such
as SAMEPERIODLASTYEAR(), to work properly. Power BI will use the date
column specified by the model author in the Mark as Date Table
setting in executing these expressions.

To utilize the Mark as Date Table feature, the Date column (Date
data type) specified for the Mark as Date Table feature must

meet the following criteria:

No null values.

No duplicate values.

Contiguous date values:

There must be a single date value for each date
from the earliest date to the latest date. In other
words, there can't be any gaps or missing dates.

If a date/time column is used, the timestamp must be the
same for each value of the column.

Product Dimension view
As shown in the database diagram schema referenced in Chapter
7, Planning Power BI Projects, it's recommended to provide a
consolidated or de-normalized dimension for datasets. In the
following view (BI.vDim_Product), three product dimension tables are
joined and a logical column, Product Category Group, is created to
support a common reporting and analysis need:

SELECT
 P.ProductKey as 'Product Key'
, P.ProductAlternateKey as 'Product Alternate Key'
, P.EnglishProductName AS 'Product Name'
, ISNULL(S.EnglishProductSubcategoryName, 'Undefined') 'Product Subcategory'
, ISNULL(C.EnglishProductCategoryName, 'Undefined') AS 'Product Category'
, CASE
 WHEN C.EnglishProductCategoryName = 'Bikes' THEN 'Bikes'
 WHEN C.EnglishProductCategoryName IS NULL THEN 'Undefined'
 ELSE 'Non-Bikes'
 END AS 'Product Category Group'
FROM
DBO.DimProduct AS P
LEFT JOIN DBO.DimProductSubcategory AS S
ON P.ProductSubcategoryKey = S.ProductSubcategoryKey
LEFT JOIN DBO.DimProductCategory AS C
ON S.ProductCategoryKey = C.ProductCategoryKey

In this example, it's necessary to use LEFT JOIN since the product
dimension table in the data warehouse allows for null values in
the foreign key column (ProductSubcategoryKey). Retrieving the
product rows that haven't yet been assigned a subcategory or
category is necessary for certain reports that highlight future
products. For these products, an ISNULL() function is used to
replace null values with an undefined value. Additionally, similar

to the Date view, a CASE expression is used to generate a column
that groups the product rows into two categories (Bikes and Non-
Bikes).

Slowly-changing dimensions
The product and customer dimension views retrieve both the
surrogate key column used for relationships in the dataset as
well as the business key that uniquely identifies the given
product or customer, respectively. For example, the same
product (FR-M94B-38) is represented by three product dimension
rows (304, 305, 306) due to changes in its list price over time:

Slowly-changing dimension processing applied to Product Dimension

As discussed in Chapter 7, Planning Power BI Projects, the
historical tracking of core business entities, such as customers
and products, via slowly-changing dimension ETL processes is
an essential requirement for data warehouses. The ability to
insert and update rows based off of changes in specific columns
is well outside the scope of SQL views and M query
transformations.

DAX measures will reference the business key or alternate key column of
these dimension tables to compute the discount count of these entities.
For dimensions without slowly-changing dimension processing applied,
the foreign key column of the related fact table can be used to compute
the distinct count of dimension values associated with the given fact or
event. Greater detail on these measures is included in Chapter
10, Developing DAX Measures and Security Roles.

M queries
With the SQL views created, the data sources configured, and the
Power BI Desktop environment options applied, the dataset
designer can finally develop the data retrieval queries and
parameters of the dataset.

Within the Power Query Editor of Power BI Desktop, group
folders can be used to organize M queries into common
categories such as Data Source Parameters, Staging Queries,
Fact table Queries, Dimension Table Queries, and Bridge Table
Queries as shown in the following screenshot:

Power Query Editor in Power BI Desktop with group folders

The parameters and queries displayed with a gray font are
included in the refresh process of the dataset but not loaded to
the data modeling layer. For example, the AdWorksSQLServer query
displayed in the preceding image merely exposes the objects of
the SQL Server database via the Sql.Database() M function for other
queries to reference. This query, along with the data source
parameters, all have a gray font and are used to streamline the
data retrieval process such that a single change can be
implemented to update many dependent queries.

Right-click a query or parameter in the queries list to expose
the Enable load and Include in report refresh properties as
shown in the following screenshot:

Enable load and Include in report refresh

For many datasets, the only queries that should be loaded to the
data model are the dimension and fact table queries and certain
parameter table queries. For this dataset, three bridge tables will
also be loaded and included in the report refresh to support the
analysis of Internet Sales and Reseller Sales data versus the annual
Sales and Margin Plan.

The parameter table queries, as described in the following Parameters
table section, do not contain data and are merely used as placeholders
for related DAX measures in the Power BI Fields list, similar to display
folders.

Data Source Parameters
Parameters are special M queries that do not access an external
data source and only return a scalar or individual value, such as
a specific date, number, or string of text characters. The primary
use case for parameters is to centrally define a common and
important value, such as a server name or the name of a
database, and then reference that parameter value in multiple
other queries. Like global variables, parameters improve the
manageability of large datasets as the dataset designer can
simply revise a single parameter's value rather than manually
modify many queries individually.

Query parameters can be created and modified via the Manage
Parameters dialog available on the Home tab of the Power Query
Editor. The following image of Manage Parameters identifies the
six parameters defined for the SQL Server database and the
Microsoft Excel workbook:

Manage Parameters in Power Query Editor

For this dataset, development and production environment
database parameters (for example, ProdServer and ProdDB) are
configured with a list of valid possible values to make it easy and
error-free when switching data sources. For the same purpose,

both the name of the Excel workbook containing the annual Sales
and Margin Plan and its file directory are also stored as parameters.

The Suggested Values dropdown provides the option to allow
any value to be entered manually, for a value to be selected from
a hardcoded list of valid values, and for a query that returns a list
(a value type in M, such as a table and a record), to dynamically
populate a list of valid parameter values. Given the small number
of valid server names in this example and the infrequency of
changing production and development server names, the three
suggested values have been entered manually.

Parameters are often used with Power BI Template (.PBIT) files to
enable business users to customize their own reports with pre-defined
and pre-filtered queries and measures. For example, the user would open
a template and select a specific department, and this selection would be
used to filter the M queries of the dataset.

Additionally, parameters can be useful in defining the values used in the
filtering conditions of queries, such as the starting and ending dates and
in the calculation logic used to create custom columns in M queries.
Parameters are usually only used by other queries and thus not loaded
(gray font) but they can be loaded to the data model as individual tables
with a single column and a single row. If loaded, the parameters can be
accessed by DAX expressions just like other tables in the model.

Staging Queries
With the data source parameters configured, staging queries can
be used to expose the data sources to the dimension and fact
table queries of the dataset. For example, the AdWorksSQLServer
staging query merely passes the production server and
production database parameter values into the Sql.Database() M
function as shown in the earlier image of the Power Query Editor
interface. This query results in a table containing the schemas
and objects stored in the database, including the SQL views
supporting the fact and dimension tables.

The SalesPlanFilePath staging query used for the Annual Sales Plan
Excel workbook source is very similar in that it merely references
the file name and file directory parameters to form a complete
file path, as shown in the following screenshot:

Annual Sales Plan Staging Query—Excel Workbook

The third and final staging query, CurrentDateQry, simply computes
the current date as a date value:

Current Date Staging Query

Just like parameters, the results of staging queries, such as
CurrentDateQry, can be referenced by other queries, such as the
filtering condition of a fact table. In the following sample M
query, the Table.SelectRows() function is used in the Internet Sales
query to only retrieve rows where the Order Date column is less
than or equal to the value of the CurrentDateQry (10/16/2017):

let
 Source = AdWorksSQLServer,
 ISales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],
 CurrentDateFilter = Table.SelectRows(ISales, each [Order Date] <=
 CurrentDateQry)
in
 CurrentDateFilter

In this simple example, the same filter condition can easily be
built into the SQL view (vFact_InternetSales), supporting the fact
table and this approach would generally be preferable. However,
it's important to note that the M engine is able to convert the
final query variable (CurrentDateFilter), including the reference to
the staging query (CurrentDateQry), into a single SQL statement via
Query Folding. In some data transformation scenarios,
particularly with rapid iterations and agile project lifecycles, it
can be preferable to at least temporarily utilize efficient M
queries within the Power BI dataset (or Analysis Services model)
rather than implement modifications to the data source (for

example, data warehouse tables or views).

As you will see in the Query folding section later in this chapter, if it's
necessary to use M to implement query transformations or logic, the
dataset designer should be vigilant in ensuring this logic is folded into a
SQL statement and thus executed by the source system. This is
particularly important for large queries retrieving millions of rows,
given the limited resources of the on-premises gateway server (if
applicable) or any provisioned capacities (hardware) with Power BI
Premium.

DirectQuery staging
The database staging query for a DirectQuery dataset is slightly
different than an import mode dataset. For this query, an
additional variable is added to the let expression, as shown in the
following example:

let
 Source = Sql.Database(ProdServer, ProdDB),
 DummyVariable = null
in
 Source

The additional variable (DummyVariable) is ignored by the query and
the same Sql.Database() function that references the server and
database parameters for the import mode dataset can also be
used for the DirectQuery dataset.

Fact and dimension queries
For larger datasets with multiple fact tables, most M queries will
access a single SQL view, apply minimal to no transformations,
and then expose the results of this query to the data model as a
dimension or fact table. For import mode datasets, the M query
is executed upon a scheduled refresh and the query results are
loaded into a compressed, columnar format. For DirectQuery
mode datasets, the M queries with the Enable load property set
only define the SQL statement representing the given dimension
or fact tables. The DirectQuery data source will utilize these SQL
statements to create SQL queries necessary to resolve report
queries, such as joining the Internet Sales query with the Product
query.

Source Reference Only
The following M query references the SQL view (BI.vDim_Customer)
via the staging query (AdWorksSQLServer) and does not apply any
further transformations:

Customer Dimension Query

The customer query accesses the unique M record associated
with the schema (BI) and SQL view (vDim_Customer) from the table
produced by the staging query (AdWorksSQLServer). This record
contains all field names of the staging table query including the
Data field that stores the SQL view. Referencing the Data field of the
M record retrieves the results of the SQL view.

Since no M transformations are applied, the M query reflects the
source SQL view and changes to the SQL view such that the
removal of a column will be automatically carried over to the
Power BI dataset upon the next refresh. The one-to-one
relationship between the SQL view and the M query is one of the

primary reasons to favor implementing, or migrating, data
transformation logic within the data warehouse source rather
than in the Power BI dataset.

M query summary
In summary, the Power Query Editor interface in Power BI
Desktop should contain the following types or groups of queries:

Parameters:

These will be used to store individual values
essential to the data retrieval that could change,
such as the names of servers, databases, and file
paths.

Staging Queries:

These queries will not be loaded to the data model
but will contain logic used by one or many other
queries.

For example, a staging query will connect to a
specific SQL Server database based on two
parameters (server and database) and this staging
query will be used by the fact and dimension table
queries.

Fact and Dimension Queries:

These queries will define the tables exposed to the
data model layer and optionally the reporting
interface.

It's essential that these queries contain columns
supporting the relationships of the data model as
well as all columns needed for
calculations/aggregations, grouping, and filtering
in reports.

Parameter Tables (optional):

Additional tables can be loaded to the data model
that don't contain relationships but are used for
other purposes, such as the user interface as a
placeholder for hidden logic.

Excel workbook – Annual Sales
Plan
For the import mode dataset, the annual Sales and Margin Plan data
is retrieved from a table object within an Excel workbook. In the
following fact table query (Sales and Margin Plan), the SalesPlanFilePath
staging query is referenced within an Excel.Workbook() data access
function:

Sales and Margin Plan query from Excel workbook source

As you saw in the Power BI Desktop settings section earlier in
this chapter, the automatic data type detection option for
unstructured sources should be disabled. It's, therefore,
necessary to explicitly define the appropriate data type for each
column of the Excel table via the Table.TransformColumnTypes()
function. The Int64.Type, Currency.Type, and type number arguments used

in this function correspond to the Whole Number, Fixed Decimal Number,
and Decimal Number data types, respectively.

For a DirectQuery dataset, the Sales and Margin Plan data would be
retrieved from a SQL view within the same database as the other
fact and dimension tables as shown in the following screenshot:

Sales and Margin Plan M query for DirectQuery dataset

The cost and time required to integrate the Sales and Margin Plan
data into the data warehouse database are one of the reasons
that the default import mode dataset was chosen for this project.
The limitation of a single database within a single data source is
currently one of the primary limiting factors for DirectQuery
datasets. In the following screenshot, an error is thrown when
trying to utilize two databases from the same database server for
a DirectQuery dataset:

DirectQuery limitation – Single Database

DirectQuery is a strategic priority for Microsoft and thus current
limitations may be eliminated in the near future.

Data types
For structured data sources, such as SQL Server, the source
column data types will determine the data types applied in
Power BI. For example, a money data type in SQL Server will
result in a Fixed Decimal Number data type in Power BI. Likewise, the
integer data types in SQL Server will result in a Whole Number data
type and the numeric and decimal data types in SQL Server will
result in Decimal Number data types in Power BI.

When an M query is loaded to the data model in a Power BI
dataset, a Fixed Decimal Number data type is the equivalent of a (19,4)
numeric or decimal data type in SQL Server. With four digits to
the right of the decimal place, the use of the Fixed Decimal Number
data type avoids rounding errors. The Decimal Number data type is
equivalent to a floating point or approximate data type with a
limit of 15 significant digits. Given the potential for rounding
errors with Decimal Number data types and the performance
advantage of Fixed Decimal Number data types, if four digits of
precision is sufficient, the Fixed Decimal Number data type is
recommended to store numbers with fractional components. All
integer or whole number numeric columns should be stored as
Whole Number types in Power BI.

Numeric columns in M queries can be set to Whole Number, Fixed
Decimal Number, and Decimal Number data types via the following
expressions, respectively—Int64.Type, Currency.Type, and type number.
The Table.TransformColumnTypes() function is used in the following M
query example to convert the data types of the Discount Amount, Sales
Amount, and Extended Amount columns:

let
 Source = AdWorksSQLServer,
 Sales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],
 TypeChanges = Table.TransformColumnTypes(Sales,
 {
 {"Discount Amount", Int64.Type}, // Whole Number
 {"Sales Amount", Currency.Type}, // Fixed Decimal Number
 {"Extended Amount", type number} // Decimal Number
 })
in
 TypeChanges

As M is a case-sensitive language, the data type expressions must be
entered in the exact case, such as type number rather than Type Number.
Note that single-line and multi-line comments can be included in M
queries. See the M query examples section later in this chapter for
additional details.

Given the impact on performance and the potential for rounding
errors, it's important to check the numeric data types defined for
each column of large fact tables. Additional details on data types
are included in Chapter 9, Designing Import and DirectQuery
Data Models.

Item access in M
Accessing records from tables, items from lists, and values from
records are fundamental to M query development. In the
following example, the results of the BI.vDim_Account SQL view are
returned to Power BI using slightly different M syntax than the
customer dimension query from the previous section:

let
 Source = AdWorksSQLServer,
 AccountRecord = Source{[Name = "BI.vDim_Account"]},
 Account = AccountRecord[Data]
in
 Account

For this query, a record is retrieved from the AdWorksSQLServer
staging query based only on the Name column. The Data field of
this record is then accessed in a separate variable (Account) to
return the results of the BI.vDim_Account SQL view to Power BI. BI
teams or the dataset designer can decide on a standard method
for accessing the items exposed from a data source staging
query.

The following sample code retrieves the "Cherry" string value from
an M list:

let
 Source = {"Apple","Banana","Cherry","Dates"},
 ItemFromList = Source{2}
in
 ItemFromList

M is a zero-based system such that Source{0} would return the
"Apple" value and Source{4} would return an error since there are
only four items in the list. Zero-based access also applies to
extracting characters from a text value. For example,
the Text.Range("Brett",2,2) M expression returns the et characters.

The list value type in M is an ordered sequence of values. There are many
functions available for analyzing and transforming list values, such as
List.Count() and List.Distinct(). List functions that aggregate the values they
contain (for example, List.Average()) are often used within grouping
queries that invoke the Table.Group() function.

DirectQuery report execution
In the following database trace from SQL Server Profiler, a
DirectQuery dataset has translated a Power BI report query into
a SQL statement, which joins the SQL statements associated
with the Reseller Sales, Reseller, and Date M queries:

SQL Server Profiler trace – Power BI DirectQuery report visualization

For DirectQuery datasets, it's important to understand both the
individual queries associated with each table of the model as well
as how the data source is utilizing these queries in resolving
report queries. In this example, the three table queries are used
as derived tables to form the FROM clause of the outer SQL
statement. Additionally, though not included in the trace image,
the WHERE clause reflects a slicer (filter) selection for a specific
calendar year in a Power BI report.

Bridge Tables Queries
The analysis of actual or historical Sales and Margin Plan versus the
Annual Sales Plan is one of the top requirements for this dataset.
Given the granularity of the annual Sales and Margin Plan (Calendar
Month, Product Subcategory, Sales Territory Region), it's necessary to create
bridge tables reflecting the unique values of these columns.

The three bridge tables, which can be hidden from the user
interface, enable relationships between the Date, Product, and Sales
Territory dimension tables with the Sales and Margin Plan fact table.

In the following example, the Sales Territory dimension table query
is referenced as a source and the unique values of the Sales
Territory Region column are retrieved via the Table.Distinct() function:

Sales Territory Bridge Table query for actual versus plan analysis

In the data model, the bridge tables will have one-to-many
relationships with both the Annual Sales Plan fact table and their
associated dimension tables. The relationship between the

bridge tables and the dimensions will be set to allow
bidirectional cross-filtering such that a filter selection for a Product
Category (for example, Bikes) will impact both the historical sales
fact tables as well as the Sales and Margin Plan. Greater details of this
model will be discussed in Chapter 9, Designing Import and
DirectQuery Data Models. The Enable load and Include in
Report Refresh properties for each bridge table query (accessible
via the right-click menu) should be set to true.

All three bridge table M queries result in simple SQL statements, such as
the following, via Query Folding:

"Select distinct [Sales Territory Region] from BI.vDim_SalesTerritory"

Therefore, all three bridge table queries can be used in a DirectQuery
dataset. Additionally, these bridge queries could be stored as new SQL
views in the source database to eliminate the dependency on M
functions.

Parameter Tables
The final group of M queries, parameter table queries, are
developed for usability and manageability purposes. From a
usability standpoint, the Date Intelligence Metrics and Adventure Works
Sales queries serve to consolidate similar DAX measures in the
Fields list. Additionally, the CurrentDate query is used to provide
reports with a text message advising of the latest data refresh
date. From a manageability standpoint, the Measure Support query
can be used to centralize intermediate or branching DAX
expressions that can be referenced by many DAX measures.

As shown in the following example of the Adventure Works Sales
query, a trivial expression can be used for three of the four
queries since the purpose of the query is simply to provide a
table name to the data model:

Adventure Works Sales Parameter Tables query

The Date Intelligence Metrics, Adventure Works Sales, and Measure Support
queries can all retrieve a blank value and the Include in report
refresh property can be disabled. The following two chapters will
demonstrate how these blank tables can be utilized as data

model metadata, and DAX measures are added to the dataset in C
hapter 9, Designing Import and DirectQuery Data Models, and Cha
pter 10, Developing DAX Measures and Security
Roles, respectively.

The CurrentDate query is the only parameter table query that needs
to be executed with each report refresh. The following M script
for the CurrentDate query produces a table with one column and one
record, representing the current date as of the time of execution:

let
 RefreshDateTime = DateTime.LocalNow(),
 TimeZoneOffset = -5,
 RefreshDateTimeAdjusted = RefreshDateTime + #duration(0,TimeZoneOffset,0,0),
 RefreshDateAdjusted = DateTime.Date(RefreshDateTimeAdjusted),
 TableCreate = Table.FromRecords({[CurrentDate = RefreshDateAdjusted]}),
 DateType = Table.TransformColumnTypes(TableCreate,{"CurrentDate", type date})
in
 DateType

All reported times in Microsoft Azure are expressed in
Coordinated Universal Time (UTC). Therefore, timezone
adjustment logic can be built into the M query to ensure the last
refreshed date message reflects the local timezone. In the
preceding example, five hours are reduced from the
DateTime.LocalNow() function reflecting the variance between US
Eastern Standard Time and UTC. The adjusted datetime value is
then converted into a date value and a table is built based on this
modified date value.

As shown in the following image, the Adventure Works Sales and Date
Intelligence Metrics queries are represented in the FIELDS list and
the CurrentDate query is used by a DAX measure to advise of the
last refreshed date:

Parameter Tables in Fields list and Data Refresh Message

The DAX expression supporting the last refreshed message is as
follows:

Last Refresh Msg =
 VAR CurrentDateValue = MAX('CurrentDate'[CurrentDate])
 RETURN "Last Refreshed: " & CurrentDateValue

An additional example of using DAX to return a string value for
title or label purposes is included in the Drillthrough Report
Pages section of Chapter 12, Applying Custom Visuals, Animation,
and Analytics.

As datasets grow larger and more complex, BI teams or dataset
designers may add or revise group names to better organize M queries.
For example, the four parameter group queries in this section serve three
separate functions (fields list, last refreshed date, and DAX logic centralization).

To experienced Power BI and SSAS Tabular developers, a parameter
table is understood as a custom table of parameter values loaded to a
model and exposed to the reporting interface. DAX measures can be
authored to detect which value (parameter) has been selected by the
user (for example, 10% growth, 20% growth) and dynamically compute

the corresponding result. For this dataset, the concept of Parameter
Tables is extended to include any query that is loaded to the data model
but not related to any other table in the data model.

Security Tables
Based on the data security needs for this project described in Chap
ter 7, Planning Power BI Projects, it's not necessary to retrieve
any tables for the purpose of implementing a row-level
security (RLS) role. As shown in the Sample Power BI project
template section in Chapter 7, Planning Power BI Projects, the
sales managers and associates should only have access to their
Sales Territory groups, while the Vice Presidents should have global
access. With these simple requirements, the security groups of
users (for example, North America, Europe, the Pacific region)
can be created and assigned to corresponding RLS roles defined
in the data model. See Chapter 10, Developing DAX Measures and
Security Roles, for details on implementing these security roles.

In projects with more complex or granular security
requirements, it's often necessary to load additional tables to the
data model such as a Users table and a Permissions table. For
example, if users were to be restricted to specific postal codes
rather than sales territory groups, a dynamic, table-driven
approach that applies filters based on the user issuing the report
request would be preferable to creating (and maintaining) a high
volume of distinct RLS roles and security groups. Given the
importance of dynamic (user-based) security, particularly for
large-scale datasets, detailed examples of implementing dynamic
security for both import and DirectQuery datasets are included
in Chapter 10, Developing DAX Measures and Security Roles.

Query folding
Query folding is one of the most powerful and important
capabilities of the M language as it translates M expressions into
SQL statements that can be executed by the source system. With
query folding, M serves as an abstraction layer to implement
both common and complex data cleansing and transformation
operations while still leveraging source system resources. When
implementing any remaining logic or data transformations via M
functions, a top priority of the dataset designer is to ensure that
these operations are folded to the data source.

In the following M query, a Table.RemoveColumns() M function is
applied against the SQL view for the Internet Sales fact table to
exclude three columns that are not needed for the dataset:

Power Query Editor: View Native Query

The additional step is translated to a SQL query that simply
doesn't select the three columns. The specific SQL statement
passed to the source system can be accessed by right-clicking the
final step in the Query Settings pane and selecting View Native
Query. If the View Native Query option is grayed out, this
indicates that the specific step or transformation is executed with
local resources.

Selecting one of the APPLIED STEPS in the Query Settings pane displays
a preview of the results of the query of the given step. Particularly for
queries with several steps, the ability to quickly walk through the
transformations or view the query results at any given step is very
helpful in analyzing and debugging M queries. Note that the names of
the variables used in the M query will be reflected in the APPLIED STEPS
pane, further underscoring the importance of applying intuitive variable
names in M queries.

Query folding is limited by the data source of the M expression
with relational databases, such as SQL Server and Oracle,
supporting the most query folding. Alternatively, no query
folding is possible when an Excel workbook or a text file is the
data source of a query. The M queries against these file sources
will use local M engine resources and thus the volume of data
imported as well as the complexity of the query should be
limited. Other sources, such as SharePoint lists, Active Directory,
and Exchange, support some level of query folding, though
significantly less than relational databases.

Partial query folding
Dataset designers should check the final step of each query in the
dataset to ensure that query folding is occurring. If all required
transformations or logic of an M query cannot be folded into a
single SQL statement, the dataset designer should attempt to re-
design the query to obtain as much query folding as possible. For
example, all common or simple transformations can be
implemented in the first four steps of the query so that View
Native Query will be visible for the fourth step. The remaining
logic can be added as the fifth step of the query and this locally
executed step or transformation will be applied against the
results of the SQL statement generated from the fourth step of
the query.

The Value.NativeQuery() M function can be used to pass a SQL statement to
the data source. However, any further transformations applied to the
results of this function in the M query will exclusively use local resources.
Therefore, if implemented, the SQL statement passed to the data source
should either include all required logic for the query or return a small
result set that can be further processed with local resources.

M Query examples
The M query language includes hundreds of functions and
several books have been written about to its application. The
greater purpose of this chapter is to understand M queries in the
context of a corporate Power BI solution that primarily leverages
an IT-managed data warehouse. As shown in the examples
shared in the M Queries section earlier, the combination of a
mature data warehouse and a layer of SQL view objects within
this source may eliminate any need for further data
transformations. However, Power BI Dataset designers should
still be familiar with the fundamentals of M queries and their
most common use cases, as it's often necessary to further extend
and enhance source data.

The following sections demonstrate three common data
transformation scenarios that can be implemented in M. Beyond
retrieving the correct results, the M queries also generate SQL
statements for execution by the source system via query folding,
and comments are included for longer-term maintenance
purposes.

If you're new to M query development, you can create a blank query
from the Other category of data source connectors available within the
Get Data dialog. Alternatively, you can duplicate an existing query via
the right-click context menu of a query in the Power Query Editor and
then rename and revise the duplicate query.

Trailing three years filter
The objective of this example is to retrieve dates from three years
prior to the current year through the current date. For example,
on October 18th, 2017, the query should retrieve January 1st,
2014 through October 18th, 2017. This requirement ensures that
three full years of historical data, plus the current year, is always
available to support reporting.

The starting date and current date values for the filter condition
are computed via Date and DateTime M functions and assigned
variables names (StartDate, CurrentDate). Since the starting date will
always be on January 1st, it's only necessary to compute the
starting year and pass this value to the #date constructor. Finally,
the two date variables are passed to the Table.SelectRows() function
to implement the filter on the Reseller Sales fact table view:

let
//Trailing Three Year Date Values
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 StartYear = Date.Year(CurrentDate)-3,
 StartDate = #date(StartYear,1,1),
//Reseller Sales View
 Source = AdWorksSQLServer,
 ResellerSales = Source{[Schema = "BI", Item = "vFact_ResellerSales"]}[Data],
//Trailing Three Year Filter
 FilterResellerSales =
 Table.SelectRows(ResellerSales, each [Order Date] >= StartDate and [Order Date] <= CurrentDate)
in
 FilterResellerSales

As shown in the View Native Query dialog available in the
Applied Steps window of the Power Query Editor, the custom

filter condition is translated into a T-SQL statement for the
source SQL Server database to execute:

Query Folding of three-year filter condition

Note that the order of the variables in the expression doesn't
impact the final query. For example, the two Reseller Sales view
variables could be specified prior to the three date variables and
the final FilterResellerSales variable would still generate the same
SQL query. Additionally, be advised that M is a case-sensitive
language. For example, referencing the variable defined as
StartDate via the name Startdate will result in a failure.

Single-line comments can be entered in M queries following the double
forward slash (//) characters per the trailing three years example.
Multiline or delimited comments start with the (/*) characters and end
with the (*/) characters, just like T-SQL queries for SQL Server.

If the requirement was only to retrieve the trailing three years of
data relative to the current date (for example, October 18th, 2014
through October 18th, 2017) the StartDate variable could be
computed via the Date.AddYears() function, as follows:

//Trailing three years (e.g. October 18th, 2014 through October 18, 2017)
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 StartDate = Date.AddYears(CurrentDate,-3)

Customer history column
In this example, the goal is to add a column to the customer
dimension table that groups the customers into four categories
based on the date of their first purchase. Specifically, the new
column needs to leverage the existing first purchase date column
and assign the customer rows to one of the following four
categories—First Year Customer, Second Year Customer, Third Year Customer,
Legacy Customer. Since the column will be computed daily with each
scheduled refresh, it will be used by the sales and marketing
teams to focus their efforts on new and older customer segments.

A combination of date functions and conditional logic
(if..then..else) is used with the Table.AddColumn() function to produce
the new column:

let
// Customer History Date Bands
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 OneYearAgo = Date.AddYears(CurrentDate,-1),
 TwoYearsAgo = Date.AddYears(CurrentDate,-2),
 ThreeYearsAgo = Date.AddYears(CurrentDate,-3),
//Customer Dimension
 Source = AdWorksSQLServer,
 Customer = Source{[Schema = "BI", Item = "vDim_Customer"]}[Data],
 CustomerHistoryColumn = Table.AddColumn(Customer, "Customer History Segment",
 each
 if [Customer First Purchase Date] >= OneYearAgo then "First Year Customer"
 else if [Customer First Purchase Date] >= TwoYearsAgo and [Customer First Purchase Date] < OneYearAgo then "Second Year Customer"
 else if [Customer First Purchase Date] >= ThreeYearsAgo and [Customer First Purchase Date] < TwoYearsAgo then "Third Year Customer"
else "Legacy Customer", type text)
in
 CustomerHistoryColumn

As shown in the following image from the Power Query Editor,
the Customer History Segment produces one of four text values based on
the Customer First Purchase Date column:

Customer History Segment column in Power Query Editor

In this example, the customer Alan Zheng falls into the Third Year
Customer segment since his first purchase date (10/20/2014) is
after 10/18/2014 - three years prior to the current date
(10/18/2017). When the dataset is refreshed on 10/21/2017, Alan
Zheng will be re-classified as a Legacy Customer by the Customer History
Segment column since his first purchase date will be more than
three years old at that time.

Like the previous M query example of a trailing three year filter,
the conditional logic for the derived customer column is also
translated into T-SQL via query folding:

Native SQL Query generated by Customer M Query
The two dynamic columns (Calendar Year Status, Calendar Month Status) included
in the date dimension SQL view earlier in this chapter could also be
computed via M functions.

Derived column data types
The final parameter to the Table.AddColumn() function is optional but
should be specified to define the data type of the new column. In
the customer history column example, the new column is defined
as a text data type. If a whole number column was created, an
Int64.Type would be specified, such as the following example:

MyNewColumn = Table.AddColumn(Product, "My Column", each 5, Int64.Type)

If the data type of the column is not defined in
the Table.AddColumn() function or later in the query via
the Table.TransformColumnTypes() function, the new column will be set
as an Any data type, as shown in the following screenshot:

Data Type of Any

Columns of the Any data type will be loaded to the data model as
a text data type. Dataset designers should ensure that each
column in every query has a data type specified. In other words,
the Any (that is, unknown) data type should not be allowed in M

queries.

Product dimension integration
The SQL view for the product dimension referenced earlier in
this chapter contained the following four operations:

1. Join the Product, ProductSubcategory, and ProductCategory
dimension tables into a single query

2. Create a custom product category group column (for
example, Bikes versus Non-Bikes)

3. Apply report-friendly column names with spaces and
proper casing

4. Replace any null values in the Product Subcategory and Product
Category columns with the 'Undefined' value

Like almost all operations available to SQL SELECT queries, the
same query can also be created via M functions. If the SQL view
for the product dimension cannot be created within the data
source, the following M query produces the same results:

let
 Source = AdWorksSQLServer,
//Product Dimension Table Views
 Product = Source{[Schema = "BI", Item = "vDim_Products"]}[Data],
 ProductSubCat = Source{[Schema = "BI", Item = "vDim_ProductSubcategory"]}[Data],
 ProductCat = Source{[Schema = "BI", Item = "vDim_ProductCategory"]}[Data],

//Product Outer Joins
 ProductJoinSubCat = Table.NestedJoin(Product,"ProductSubcategoryKey",ProductSubCat,"ProductSubcategoryKey","ProductSubCatTableCol",JoinKind.LeftOuter),
 ProductJoinSubCatCol = Table.ExpandTableColumn(ProductJoinSubCat,"ProductSubCatTableCol",{"EnglishProductSubcategoryName","ProductCategoryKey"},{"Product Subcategory", "ProductCategoryKey"}),

 ProductJoinCat = Table.NestedJoin(ProductJoinSubCatCol,"ProductCategoryKey",ProductCat,"ProductCategoryKey","ProductCatTableCol",JoinKind.LeftOuter),

 ProductJoinCatCol = Table.ExpandTableColumn(ProductJoinCat,"ProductCatTableCol",{"EnglishProductCategoryName"},{"Product Category"}),

//Select and Rename Columns
 ProductDimCols = Table.SelectColumns(ProductJoinCatCol,{"ProductKey","ProductAlternateKey","EnglishProductName","Product Subcategory","Product Category"}),
 ProductDimRenameCols = Table.RenameColumns(ProductDimCols,{
 {"ProductKey", "Product Key"},{"ProductAlternateKey","Product Alternate Key"},{"EnglishProductName","Product Name"}
 }),

//Product Category Group Column
 ProductCatGroupCol = Table.AddColumn(ProductDimRenameCols,"Product Category Group", each
 if [Product Category] = "Bikes" then "Bikes"
 else if [Product Category] = null then "Undefined"
 else "Non-Bikes"
,type text),

//Remove Null Values
 UndefinedCatAndSubcat = Table.ReplaceValue(ProductCatGroupCol,null,"Undefined",Replacer.ReplaceValue,{"Product Subcategory","Product Category"})
in
 UndefinedCatAndSubcat

The three product dimension tables in the dbo schema of the
data warehouse are referenced from the AdWorksSQLServer staging
query described earlier in this chapter.

The Table.NestedJoin() function is used to execute the equivalent of
the LEFT JOIN operations from the SQL View, and the
Table.ExpandTableColumn() function extracts and renames the required
Product Subcategory and Product Category columns. Following the
selection and renaming of columns, the Product Category group
column is created via a conditional expression within
the Table.AddColumn() function. Finally, the Table.ReplaceValue() function
replaces any null values in the Product Category and Product Subcategory
columns with the 'Undefined' text string. The Power Query Editor
provides a preview of the results:

Power Query Editor preview of Product M Query

Despite the additional steps and complexity of this query relative
to the previous M query examples (trailing three years filter,
Customer History Segment column), the entire query is translated into a
single SQL statement and executed by the source SQL Server
database. The View Native Query option in the Applied Steps
pane of the Power Query Editor reveals the specific syntax of the
SQL statement generated via query folding:

Part of Native Query generated from Product M Query
Note that a dedicated SQL view object in the BI schema (for example,
BI.vDim_ProductSubcategory) is accessed for each of the three product dimension
tables. Per the SQL views section earlier in this chapter, it's
recommended to always access SQL views from Power BI datasets, as
this declares a dependency with the source tables.

Note that the Table.Join() function could not be used in this

scenario given the requirement for a left outer join and the
presence of common column names. With a left outer join, the
presence of common column names, such as ProductSubcategoryKey or
ProductCategoryKey, for the tables in the join operation would cause
an error. Additionally, although a left outer join is the default
behavior of the Table.NestedJoin() function, it's recommended to
explicitly specify the join kind (for example, JoinKind.Inner,
JoinKind.LeftOuter, JoinKind.LeftAnti) as per the ProductJoinSubCat and
ProductJoinCat variables of the M query.

Whenever any unstructured or business-user-owned data sources are
used as sources for a Power BI dataset, it's usually appropriate to
implement additional data quality and error-handling logic within the M
query. For example, a step that invokes the Table.Distinct() function could
be added to the Sales and Margin Plan query that retrieves from the Excel
workbook to remove any duplicate rows. Additionally, the third
parameter of the Table.SelectColumns() function (for example,
MissingField.UseNull) can be used to account for scenarios in which source
columns have been renamed or removed.

M editing tools
Power BI Desktop stores the M code for queries created via the
Power Query Editor graphical interface or the Advanced Editor
within M documents for repeatable execution. Similar to other
languages and project types, code editing tools are available to
support the development, documentation, and version control of
M queries. Dataset designers can use Visual Studio or Visual
Studio Code to author and manage the M queries for Power BI
and other Microsoft projects. These tools include common
development features, such as IntelliSense, syntax highlighting,
and integrated source control.

Advanced Editor
In Power BI Desktop, the M code for each query can be accessed
from the Advanced Editor window within the Power Query
Editor. With the Power Query Editor open, select a query of
interest from the list of queries on the left and click on the
Advanced Editor icon from the Home tab to access the following
window:

Advanced Editor in Power BI Desktop

As of the October 2017 release of Power BI Desktop, the
Advanced Editor is limited to checking the syntax of the query.
The colorization or highlighting of keywords, surrounding
detection, and IntelliSense features available to DAX expressions
is not yet available in Power BI Desktop. Given the importance of
M queries to Power BI projects, as well as SQL Server Analysis
Services 2017 and other Microsoft applications, external M
editing tools, such as Visual Studio Code, are frequently used by
dataset designers.

Experienced M query authors will often use the data transformation
icons available in the Power Query Editor to quickly produce an initial
version of one or a few of the requirements of the query. The author then
uses the Advanced Editor or an external M editing tool to analyze the M
code generated by the Power Query Editor and can revise or enhance
this code, such as by changing variable names or utilizing optional
parameters of certain M functions.

For the most common and simple data transformation tasks, such as
filtering out rows based on one value of a column (for example, State =

"Kansas"), the M code generated by the Power Query Editor usually

requires minimal revision. For more complex queries with custom or less
common requirements, the Power Query Editor graphical interface is
less helpful and a greater level of direct M development is necessary.

Visual Studio Code
Visual Studio Code is a free, lightweight code-editing tool from
Microsoft that's available on all platforms (Windows, Mac,
Linux). Power Query M Language is an extension to Visual
Studio Code that provides code-editing support for M queries, as
shown in the following screenshot:

M Query in Visual Studio Code

In this example, the same Internet Sales query viewed in the
Advanced Editor of Power BI Desktop has been copied into a
Visual Studio code file and saved with a (.pq) file extension. Once
saved in a supported file extension, code-editing features, such
as colorization, auto-closing, and surrounding detection, are
applied. M query files can be opened and saved with the
following four file extensions—.m, .M, .pq, and .PQ.

Since the .pq file extension is used by the Power Query SDK for Visual
Studio, as described in the following section, this file extension is

recommended for storing M queries.

In the initial release of the extension (v 1.0.0), IntelliSense is
limited to the terms within the query. Future updates will likely
include IntelliSense support for the standard library of M
functions and common M syntax, similar to the Power Query
SDK for Visual Studio. To install the Power Query M Language
extension for Visual Studio Code, open the Extensions
Marketplace in Visual Studio Code (View | Extensions) and
search for the name of the extension.

Prior to the M extension for Visual Studio Code and the Power Query
SDK for Visual Studio, M developers commonly utilized the free
Notepad++ code editor application. Since M is not a standard supported
language for this tool, developers would create a user-defined language
by pasting or typing in a list of M functions and keywords. The following
blog post from Lars Schreiber, MS MVP, walks through the M for
Notepad++ setup process: http://ssbi-blog.de/technical-topics-english/power-query-editor-
using-notepad/.

http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/

Visual Studio
For Visual Studio 2015 and 2017, the Power Query SDK can be
used to create Data Connector and M query projects, as shown in
the following screenshot:

Power Query project types in Visual Studio

With a new PQ file solution and project in Visual Studio, the M
queries of a Power BI dataset can be added as separate (.pq) files,
as shown in the following screenshot:

Power Query project in Visual Studio 2017

Unlike the extension for Visual Studio Code, the file extension
types for Power Query projects are exclusive to (.pq). Most
importantly, full M language Intellisense is supported, making it
dramatically easier to find M functions relevant to specific data
transformation operations. Moreover, unlike the extension for
Visual Studio Code, M queries can be executed from within
Visual Studio via the Power Query SDK for Visual Studio. To
execute an M query in Visual Studio, such as in the preceding
example, click the Start button on the toolbar (green play icon)
or hit F5. You can also right-click the Power Query project (for
example, AdWorks Enteprise Import) to configure properties of the M
query project, such as the maximum output rows to return and
whether native queries can be executed.

To install the Power Query SDK for Visual Studio, access the
Visual Studio Marketplace (Tools | Extensions and Updates) and

search for the name of the extension (Power Query SDK).

As per the lock icons next to the project files in the Solution Explorer
window, the Power Query SDK for Visual Studio enables standard
integration with source control and project management tools, such as
Team Foundation Server (TFS) and Visual Studio Team Services
(VSTS).

Summary
In this chapter, we've covered all the components of the data
retrieval process used to support the dataset for this project as
described in Chapter 7, Planning Power BI Projects. This includes
the layer of SQL views within a database source, source
connectivity parameters in Power BI Desktop, and the M queries
used to define and load the dimension and fact tables of the
dataset. In constructing a data access layer and retrieval process
for a dataset, we've also discussed the design considerations
relative to import and DirectQuery datasets, Power BI Desktop
configuration options, and data source privacy levels.
Additionally, we've reviewed the core concepts of the M
language, including query folding, item access, and data types.
Moreover, we've reviewed three examples of efficiently
implementing impactful data transformation logic via M queries
as well as the tools for developing and editing M queries.

In the next chapter, we'll leverage the M queries and design
techniques described in this chapter to create import and
DirectQuery data models. Specifically, the dimension and fact
table M queries will become the dimension and fact tables of the
data model, and relationships will be defined to form multiple
star schemas. Additionally, the bridge table M queries will be
used to support the analysis of historical sales and margin results
versus the annual sales and margin plan.

Designing Import and
DirectQuery Data Models
This chapter utilizes the queries described in Chapter 8,
Connecting to Sources and Transforming Data with M, to
create both an import and a DirectQuery Data Model.
Relationships are created between fact and dimension tables to
enable business users to analyze the fact data for both Internet
Sales and Reseller Sales simultaneously by using common
dimension tables and across multiple business dates. A
combination of relationships, bidirectional cross-filtering, and
DAX measures will be used to support the analysis of actual sales
data versus the Annual Sales and Margin Plan. Additionally, the
product dimension table is enhanced with a hierarchy to enable
simple drill up/down, and a custom sort order is applied to
columns in the date dimension table.

This chapter also includes recommended practices for model
metadata, such as data categories, and tips to improve the
usability of Data Models, such as a simplified field list. Finally,
we will review common performance analysis tools and
optimization techniques for import and DirectQuery Data
Models. As described in the Dataset planning section of Chapter
7, Planning Power BI Projects, a DirectQuery model relies on the
data source of the dataset (for example, a SQL Server-relational
database) to execute report queries while an import model loads
(copies) the source data into a columnar compressed in-memory
data store. The implications of this decision significantly
influence many factors of Power BI solutions, such as
modifications to data source systems to support DirectQuery
datasets and the configuration of scheduled refresh processes to

support import mode datasets.

In this chapter, we will review the following topics:

Dataset objectives

Views in Power BI Desktop

Fact table design

Relationships

Hierarchies

Custom sort orders

Bidirectional cross-filtering

Model metadata

Performance optimization

Dataset layers
As we saw in Chapter 7, Planning Power BI Projects, and Chapter 8,
Connecting to Sources and Transforming Data with M, Power
BI datasets are composed of three tightly integrated layers, all
included within a Power BI Desktop file. The M Queries
described in Chapter 8, Connecting to Sources and Transforming
Data with M, connect to data sources and optionally apply data
cleansing and transformation processes to this source data to
support the Data Model. The Data Model, the subject of this
chapter, concerns the relationships defined between fact and
dimension tables, hierarchies of related columns, and metadata
properties that define default behaviors, such as the sorting of
column values. The final layer of datasets discussed in Chapter
10, Developing DAX Measures and Security Roles, Data
Analysis Expressions (DAX) Measures, leverages the Data
Model (and thus the M Queries) to deliver analytical insights for
presentation in Power BI and other tools.

The term Data Model is often used instead of dataset, particularly in the
context of Analysis Services. Both Azure Analysis Services models and
SQL Server Analysis Services (SSAS) models created in Tabular
mode include the same three layers of Power BI datasets. In other
contexts, however, Data Model refers exclusively to the relationships,
measures, and metadata, but not the source queries. For this reason, and
given the use of the term datasets in the Power BI service, the term
dataset (and dataset designer) is recommended.

The following diagram summarizes the role of each of the three
dataset layers:

Three layers of datasets

At the Data Model layer, all data integration and
transformations should be complete. For example, it should not
be necessary to define data types or create additional columns at
the Data Model level.

Ensure that each layer of the dataset is being used for its intended role.
For example, DAX Measures should not contain complex logic, so as to
avoid unclean or inaccurate data. Likewise, DAX Measure expressions
should not be limited by incorrect data types (for example, a number
stored as text) or missing columns on the date table. Dataset designers
and data source owners can work together to keep the analytical layers
of datasets focused exclusively on analytics.

Dataset objectives
For both Power BI projects and longer-term deployments, it's
critical to distinguish Power BI datasets from Power BI reports
and dashboards. Although Power BI Desktop is used to develop
both datasets and reports, a Power BI dataset is an SSAS Data
Model internally. Similar to an SSAS Data Model developed and
maintained by IT, the intent of the Power BI dataset is to provide
a simplified layer for reporting and analysis and to embed
corporate-approved logic and security. Power BI reports, which
are also saved as .pbix files, will only connect to the dataset and
thus will exclusively leverage Power BI Desktop's visualization
features, such as Bookmarks and Slicer visuals.

As per Chapter 7, Planning Power BI Projects, datasets and reports
are also associated with unique technical and non-technical
skills. A Power BI report developer, for example, should
understand visualization standards, the essential logic and
structure of the dataset, and how to distribute this content via
Power BI Apps.

However, the report developer doesn't necessarily need to know
any programming languages and can iterate very quickly on
reports and dashboards. A Power BI dataset designer,
conversely, must have a fundamental knowledge of DAX and is
very well served by the M (Power Query) language and standard
SQL. Additionally, the dataset designer is not able to iterate as
quickly as the report developer given the technical dependencies
within a dataset and the longer-term objectives for the dataset.

Given that the dataset serves as the bridge between data sources

and analytical queries, it's important to proactively evaluate
datasets relative to longer-term objectives. Large, consolidated
datasets should be designed to support multiple teams and
projects and to provide a standard version or definition of core
metrics. Although organizations may enable business users to
create datasets for specific use cases, corporate BI solutions
should not utilize datasets like individual reports for projects or
teams.

The following table summarizes the primary objectives of
datasets and identifies the questions that can be used to evaluate
a dataset in relation to each objective:

Objective Success criteria

User interface

How difficult is it for business users to build a
report from scratch?
Are users able to easily find the measures and
columns needed?

Version
control

Do our measures align with an official,
documented definition?
Are we reusing the same dimensions across
multiple business processes?

Data security

Have we implemented and thoroughly tested
Row-level security (RLS) roles?
Are we using Azure Activity Directory
(AAD) security groups to implement
security?

Performance

Are users able to interact with reports at the
speed of thought?
Are our core DAX Measures efficient and
utilizing all CPU cores available?

Scalability
Can the dataset support additional business
processes and/or history?
Can the dataset support additional users and
workloads?

Analytics

Does the dataset deliver advanced insights
(out of the box)?
Are any local (report-level) measures or
complex filters being used?

Availability

How confident are we in the data sources and
data retrieval process?
Are there dependencies we can remove or
potential errors we can trap?

Manageability

How difficult is it to implement changes or to
troubleshoot issues?
Can existing data transformation and
analytical logic be consolidated?

Several of the objectives are self-explanatory, but others, such as
availability and manageability, are sometimes overlooked. For
example, the same business logic may be built into many
individual DAX Measures, making the dataset more difficult to
maintain as requirements change. Additionally, there may be
certain hardcoded dependencies within the M Queries that could
cause a dataset refresh to fail. Dataset designers and BI teams
must balance the needs to deliver business value quickly while
not compromising the sustainability of the solution.

To simplify individual measures and improve manageability, common
logic can be built into a small subset of hidden DAX Measures. The DAX
Measures visible in the fields list can reference these hidden measures
and thus will automatically update if any changes are necessary. This is
very similar to parameters and data source staging queries in M per Chapt
er 8, Connecting to Sources and Transforming Data with M. Examples of
centralizing DAX logic are provided later in this chapter within the

Parameters table section.

Competing objectives
As a dataset is expanded to support more dimension and fact
tables, advanced analytics, and more business users, it can be
necessary to compromise certain objectives to deliver others. A
common example of this is the implementation of date
intelligence measures. For instance, five DAX Measures with
their own date intelligence calculation (for example, Year-to-Date,
Prior Year-to-Date), may be created for each existing measure thus
causing a dataset with 20 measures to contain 120 measures.
Since Power BI does not currently support display folders for
measures, this can negatively impact the usability or user
interface objective. Another example is the performance of
complex DAX Measures relative to the scale of the dataset.
Advanced, statistical calculations can be embedded in datasets
but performance is limited by the size of the dataset and the
volume of users that utilize this logic.

A method or work-around for providing the essential effect of measure-
display folders can be achieved with parameter tables. Essentially, an
empty table can be loaded to the model with a table name that describes
a type of DAX Measure. DAX Measures can then be assigned to this table
via the Home Table property. See the Parameter tables section for
additional details.

External factors
Just like any other database, a well-designed Power BI dataset
can still fail to deliver its objectives due to external factors. For
example, Power BI reports can be created that generate a wide
and long table of many columns and many metrics. These data
extracts and other dense visualizations that plot many different
points are very resource-intensive relative to card- and
summary-level chart visualizations. Additionally, even when the
compression of an import mode dataset is maximized and the
DAX Measures are efficient, there may be insufficient hardware
resources available to support the given reporting workload. It's
the responsibility of the Power BI admin, as described in Chapter
7, Planning Power BI Projects, and potentially any delegated
capacity administrators to utilize the monitoring capabilities of
Power BI and to provision the necessary resources to ensure
sufficient performance.

The Data Model
The Data Model layer of the Power BI dataset consists of the
Relationship View, the Data View, and the fields list exposed in
the Report View. Each of the three views in Power BI Desktop is
accessible via an icon in the top-left menu below the toolbar,
although the Data View is exclusively available to import mode
datasets.

The Relationships View
The Relationships View provides the equivalent of a database
diagram specific to the tables loaded to the model for the dataset.
The relationship lines distinguish the one, or parent, table of
each relationship from the many, or child, table. A solid line
indicates that the relationship is active, while a dotted line
denotes an inactive relationship that can only be activated via
the USERELATIONSHIP() DAX expression. Additionally, the arrow icons
on the relationship lines advise whether cross-filtering is single-
directional (one arrow → one way) or bidirectional (two arrows).

In the following screenshot from the Relationships View, only
the Reseller to Reseller Sales relationship is bidirectional and the
relationships between all tables displayed are active:

Relationships View

Given the bidirectional cross-filtering relationship, a filter

applied to the Employee table would filter the Reseller Sales table and
then also filter the Reseller dimension table. Double-clicking a
relationship line prompts the Edit Relationship dialog to
optionally modify the columns defining the relationship, the
cross-filtering behavior (single or bidirectional), and whether the
relationship is active or passive.

The bidirectional relationship between Reseller and Reseller Sales from this
example is only intended to demonstrate the graphical representation of
relationships in the Relationships View. Bidirectional relationships
should only be applied in specific scenarios, as described in the
Bidirectional relationships section later in this chapter.

A gray font indicates that the given column is not visible in the
Report View. For certain tables that are only used for internal
logic, such as bridge tables or measure support, the entire table
will be grayed out and invisible to the Report View. Synonyms
can only be accessed via the Relationships View and can serve to
improve the accuracy of Power BI's Q & A natural language
queries by associating terms with tables, columns, and measures
of the Data Model.

The Data View
The Data View provides visibility to the imported rows for each
table as well as important metadata, such as the count of rows
and the distinct values for columns. In the following screenshot,
the Freight column of the Reseller Sales table has been selected in
the Data View, as indicated by the table icon on the far left:

Data View

Metadata of the column and/or table selected is displayed at the
bottom of the Data View window. For example, selecting the
Freight column per the preceding image results in a status
message noting 53,207 rows for the Reseller Sales table and 1,394
distinct values for the Freight column. If only the table name is

selected from the fields list, only the count of rows imported to
the table is displayed at the bottom.

The count of rows, and particularly the count of distinct values in a
column, is of critical importance to import mode datasets. Columns with
many unique values, such as primary keys or highly precise numeric
columns (that is, 3.123456), will consume much more memory.
Additionally, as a columnar database, the columns with a larger
memory footprint will also require more time to scan to resolve report
queries.

DirectQuery datasets do not include Data View and thus
common modeling features, such as setting the data format of
columns and measures, can be accessed via the Modeling tab in
the Report View. The dataset designer of a DirectQuery dataset
would select the column or measure from the Fields list in
the Report View and then access the relevant metadata property
from the Modeling tab, such as Data Category and Sort by
Column. The availability of Data View and its supporting
metadata (for example, count of rows, discount count of values)
is a modeling convenience of import mode datasets over
DirectQuery datasets. In the absence of the Data View,
DirectQuery modelers can use table report visuals on the Report
View to sample or preview the values and formatting of columns
and measures.

The Report View
The Report View is primarily used for developing visualizations,
but it also supports modeling features, such as the creation of
user-defined hierarchies. In the following screenshot of a
DirectQuery dataset, the Customer City column of the Customer table is
selected from the fields list:

Modeling options in Report View

The Data Category and Default Summarization properties for the
Customer City column have been set to City and Don't summarize,
respectively. The Modeling tab of the Report View provides both
import and DirectQuery datasets with access to all common
modeling features, such as managing relationships, creating new
DAX Measures, and accessing RLS roles.

Note that the New Table option is grayed out for DirectQuery datasets
since DAX-calculated tables are exclusively able to import models.
However, as explained in both the chapters Chapter 7, Planning Power BI
Projects and Chapter 8, Connecting to Sources and Transforming Data with
M, DAX-calculated columns and tables should be rarely used. M queries,
SQL views, and data warehouse objects are almost always preferable
alternatives to support the needed columns and tables.

In terms of data modeling, the Relationships View and the

following Manage relationships dialog are the most fundamental
interfaces as these definitions impact the behavior of DAX
Measures and report queries:

Manage relationships dialog

Relationships can be created, edited, and deleted from the
Manage relationships dialog. For larger models with many tables
and relationships, the dataset designer can utilize both the
Manage relationships dialog and the Relationships View.

Dynamic Management Views (DMVs), such as TMSCHEMA_RELATIONSHIPS,
can be used to analyze Power BI datasets, just as they're used with other
SQL Server products. To get started, simply open the DAX Studio
application while the Power BI Desktop (PBIX) file is open and connect
to the running dataset. You can then query the DMVs (that is, select * from
$SYSTEM.TMSCHEMA_RELATIONSHIPS). For longer-term projects, it can be worthwhile
to create a Power BI dataset that exclusively retrieves from DMVs data
and supports updated documentation reports, such as the tables,
columns, and measure definitions included in a dataset. An example of
this is included in the Microsoft Power BI Cookbook (https://www. packtpub.com/bi
g-data-and-businessintelligence/microsoft-power-bi-cookbook).

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Fact tables
There are three fact tables for this dataset—Internet Sales, Reseller
Sales, and the Sales and Margin Plan. The ability to analyze and filter
two or all three of these tables concurrently via common
dimensions, such as Date, Product, and Sales Territory, is what gives
this dataset its analytical value to the business. A Power BI
report, which is always connected to a single dataset, could
contain visualizations comparing total Adventure Works Sales (Internet
Sales plus Reseller Sales) to the overall Sales and Margin Plan. This same
report could also include detailed visualizations that explain
higher-level outcomes, such as the growth in online customers or
changes in the Reseller Sales margin rates:

Data Warehouse Bus Matrix

Each checkmark symbol represents the existence of a
relationship implemented either directly between the fact and
dimension tables in the Data Model or, in the case of the Sales and
Margin Plan, via bridge tables. See Chapter 7, Planning Power BI
Projects, for more details on the Data Warehouse Bus Matrix.

The Sales and Margin Plan is at a lower grain than the Internet Sales and Reseller
Sales fact tables and thus cannot be filtered directly by columns such as
Product Name. For the Sales and Margin Plan fact table, an alternative model
design, including bridge tables and conditional DAX Measures, is used to
support cross-filtering from the Product, Sales Territory, and Date
dimension tables. See the Bridge tables section later in this chapter for
more details.

Fact table columns
Fact tables should only contain columns that are needed for
relationships to dimension tables and numeric columns that are
referenced by DAX Measures. In some models, an additional
column that isn't modeled in a dimension table and is needed for
analysis, such as Sales Order Number, may also be included in a fact
table.

Given their size and central role in the dataset, fact tables receive
much greater analysis to deliver optimal performance and
scalability.

In the following T-SQL query of the Reseller Sales source fact table,
columns are computed that produce the same values as the
ExtendedAmount, SalesAmount, and TotalProductCost columns:

Reseller Sales fact column logic

Only the UnitPrice, OrderQuantity, DiscountAmount, and ProductStandardCost
columns are needed for the import mode dataset since DAX
Measures can be written to embed the necessary logic (for
example, UnitPrice * OrderQuantity) for the ExtendedAmount, SalesAmount, and
TotalProductCost columns. By not importing these columns to the
Data Model, a significant amount of data storage is saved and
query performance is not compromised. Columns with few
unique values, such as OrderQuantity, can be highly compressed by
import mode datasets and thus are lightweight to store and fast
to scan to resolve report queries.

The same three columns can also be removed from the Internet Sales fact
table. The SUMX() function will be used in the DAX Measures and only
reference the source columns (OrderQuantity, UnitPrice, and ProductStandardCost).

The $0.04 difference between the sum of the Sales Amount column and the

Sales Amount Calc expression is caused by the DiscountAmount column being

stored as a float (approximate) data type. In almost every scenario, a
variance this small ($.04 out of $80.4 M) is acceptable to obtain the
scalability benefit of not importing a fact table column.

If the SQL View for the fact table is exclusively utilized by this
dataset, then the three columns can be removed there. If the SQL
View cannot be modified, then the three columns can be
removed via the M Query for the fact table, as shown in the
following screenshot:

Fact table columns excluded from the dataset

As shown in the previous screenshot, the Table.RemoveColumns()
function excludes three columns from the source SQL View, as
these columns only represent derived values from other columns
that are included in the query. Therefore, for an import mode
dataset, DAX Measures can be written to efficiently implement
these simple calculations via the source columns, such as Unit
Price and Order Quantity. However, for a DirectQuery dataset, these
derived columns (for example, Total Product Cost) would not be
removed due to the performance advantage of the SUM() SQL
expressions referencing individual columns. The following
chapter contains details on implementing these DAX measures
and other measure expressions.

Fact column data types
It's essential that the numeric columns of fact tables are assigned
to the appropriate data types. All integer columns, such as Order
Quantity, should be stored as a whole number data type, and
decimal numbers will be stored as either fixed decimal numbers
or as decimal numbers. If four decimal places is sufficient
precision, a Fixed decimal number type should be used to avoid
rounding errors and the additional storage and performance
costs of the decimal number type.

In the following screenshot, the Freight column is stored as a
Fixed decimal number type and, thus, despite a format of six
decimal places, only four significant digits are displayed to the
right of the decimal place:

Fixed decimal number data type

Dataset designers should check the numeric columns of fact
tables and ensure that the appropriate data type has been
assigned for each column. For example, certain scientific
columns may require the deep precision available for decimal
number types (15 significant digits), while accounting or
financial columns generally need to be exact and thus the
internal (19, 4) data type of a Fixed decimal number type is
appropriate. Note that the result of aggregated expressions
against this fixed decimal column will be a number of the same
type and, therefore, to avoid overflow calculation errors, will also
need to fit the (19, 4) data type. The Data types section in Chapter
8, Connecting to Sources and Transforming Data with
M provides details on the relationship between M data types and
data types in the Data Model, as well as the function for
converting column types in M Queries.

The Data View from the Fixed decimal number data type image
is not available for DirectQuery datasets. For DirectQuery
datasets, the data types of columns should be set and managed at
the data source table level such that Power BI only reflects these
types. Revising data types during report query execution, either
via SQL views in the data source or the M Queries in Power BI,
can significantly degrade the performance of DirectQuery
datasets.

Fact-to-dimension relationships
To create the Data Model relationships identified in the Data
Warehouse Bus Matrix image:

1. Click Manage Relationships from the Modeling tab in
Report View.

2. From the Manage Relationships dialog, click the New
command button at the bottom to open the Create
relationship interface. Choose the fact table, such as
Internet Sales, for the top table via the dropdown and then
select the dimension table as shown in the following
screenshot:

Creating a relationship for the import mode dataset

If the relationship columns have the same name, such as Currency

Key in this example, Power BI will automatically select the
columns to define the relationship. Almost all relationships will
follow this Many to one(*:1) or fact-to-dimension pattern with
the Cross-filter direction property set to Single and the
relationship set to active.

The two columns used for defining each relationship should be
of the same data type. In most relationships, both columns will
be of the whole number data type as only a numeric value can be
used with slowly changing dimensions. For example, a Product Key
column could use the values 12, 17, and 27 to represent three
time periods for a single product as certain attributes of the
product changed over time.

Prior to the Mark as Date Table feature described in the previous
chapter, a date column stored as a date data type was used for
relationships in Power BI datasets as this enables the time intelligence
functions of DAX to work correctly. Given this feature, however, whole
number (integer) columns stored in YYYYMMDD format (for example,
20180225 for February 25th, 2018) can be used for fact-to-date table
relationships in Power BI datasets. Details on utilizing this feature and
other considerations for date dimension tables are included within the
SQL views section of Chapter 8, Connecting to Sources and Transforming
Data with M.

As more relationships are created, it can be helpful to switch to
the Relationships view and move or organize the dimension
tables around the fact table. Relationships view can make it clear
when additional relationships need to be defined and can be
useful in explaining the model to report authors and users.

Click OK to create the relationship and repeat this process to
build the planned star schema relationships for both the Internet
Sales and Reseller Sales fact tables, as shown in the following
screenshot of Internet Sales:

Internet Sales relationships

All relationships from Internet Sales to a dimension table are active
(solid line) except for two additional relationships to the Date
dimension table. In this dataset, the Order Date is used as the active
relationship, but two additional inactive (dotted line)
relationships are created based on the Due Date and Ship Date
columns of the fact table. DAX Measures can be created to
invoke these alternative relationships via the USERELATIONSHIP() DAX
function, as shown in the following example:

Internet Net Sales (Due Date) =
CALCULATE([Internet Net Sales], USERELATIONSHIP('Internet Sales'[Due Date Key],'Date'[Date Key]))

Internet Net Sales (Ship Date) =
CALCULATE([Internet Net Sales],USERELATIONSHIP('Internet Sales'[Ship Date Key],'Date'[Date Key]))

The inactive relationships and their corresponding measures
enable report visualizations based on a single-date dimension
table, such as in the following table:

Measures with active and inactive relationships

In this scenario, the Internet Net Sales measure uses the active
relationship based on Order Date by default, but the other measures
override this relationship via the CALCULATE() and USERELATIONSHIP()
functions.

A common alternative approach to inactive relationships is to load
additional date dimension tables and create active relationships for each
additional date column on the fact table (for example, Due Date, Ship Date) to
these tables. The columns for these additional date tables can be named
to avoid confusion with other date columns (for example, Ship Date Calendar
Year) and some teams or organizations are more comfortable with table
relationships than DAX Measures. Additionally, this design allows for
intuitive matrix-style visualizations with two separate date dimensions
(Ship Date, Order Date) on the x and y axis filtering a single measure via
active relationships.

For DirectQuery datasets, the Assume referential integrity
relationship property is critical for performance as this
determines whether inner- or outer-join SQL statements are
generated to resolve report queries. When enabled, as shown in
the following screenshot, inner-join SQL queries will be passed
to the source system when report queries require columns or
logic from both tables of the relationship:

Assume referential integrity

If Assume referential integrity is not enabled, outer-join SQL
queries will be generated to ensure that all necessary rows from
the fact table or many sides of the relationship are retrieved to
resolve the report query. The query optimizers within supported
DirectQuery sources, such as SQL Server and Oracle, are able to
produce much more efficient query execution plans when
presented with inner-join SQL statements. Of course, improved
performance is of no value if the outer join is necessary to return
the correct results, thus it's essential for referential integrity
violations in the source system to be addressed.

Bridge tables
For this dataset, bridge tables are used to link three dimension
tables (Sales Territory, Product, and Date) to the Sales and Margin Plan fact
table. As shown in the following screenshot from the
Relationships View, the bridge tables are hidden from the fields
list in the Report View (gray shading) and bidirectional cross-
filtering is enabled between the dimension and bridge tables:

Bridge tables hidden from the Report View

The bidirectional relationships enable filter selections on the
three dimension tables (Sales Territory, Product, and Date) to impact
the Sales and Margin Plan fact table as well as the Internet Sales and
Reseller Sales fact tables. Given the higher granularity of the
dimension tables relative to the Sales and Margin Plan (for example,
individual dates versus months), the bridge tables with distinct
values (the one side) and bidirectional cross-filtering support the
core requirement of analyzing historical sales data (Internet and
Reseller Sales) versus the Sales and Margin Plan.

As described in the Bridge Tables Queries section of Chapter
8, Connecting to Sources and Transforming Data with M, a
Table.Distinct() M function can be used against the column from
the given dimension table query that aligns with the granularity
of the Sales and Margin Plan table.

For example, the Sales and Margin Plan fact table contains rows per
Product Subcategory, thus the Product Subcategory bridge table contains
one row for each unique Product Subcategory value via the following
M expression:

let
 SubCats = Table.SelectColumns(Product, {"Product Subcategory"}),
 DistinctSubCats = Table.Distinct(SubCats)
in
 DistinctSubCats

The existing M Query for the Product dimension table, which
references the data source staging query (AdWorksSQLServer) and the
SQL view of the dimension (BI.vDim_Product), is leveraged by the
bridge table query. The M Queries for the bridge tables generate
simple SQL statements ("Select Distinct..") for execution by the
source system. Additionally, with the Include in report
refresh query property set to true, any new dimension values are
automatically retrieved into the dataset.

Parameter tables
Unlike the bridge tables, there are no relationships between the
four parameter tables and any other tables in the model, as
shown in the following screenshot from the Relationships View:

Parameter tables

Measure groups
The Date Intelligence and Adventure Works Sales tables only serve to
provide an intuitive name for users to find related DAX
Measures. For example, several of the most important DAX
Measures of the dataset will include both Internet Sales and Reseller
Sales. It wouldn't make sense for these consolidated measures,
such as Total Net Sales, to be found under the Internet Sales or
Reseller Sales fact tables in the field list.

For similar usability reasons, the Date Intelligence Metrics provides
an intuitive name for users and report developers to find
measures, such as year-to-date, prior year-to-date, and year-
over-year growth. The two parameter tables, Date Intelligence
Metrics and Adventure Works Sales, effectively serve as display folders,
as shown in the following screenshot of the Fields list from the
Report View:

Fields list with parameter tables

To obtain the calculator symbol icon in the fields list, all columns
have to be hidden from the Report View and at least one DAX
Measure must reference the table in its Home Table property.
Once these two conditions are met, the show/hide pane arrow of
the fields list highlighted in the image can be clicked to refresh
the fields list.

In this example, the Adventure Works Sales and Date Intelligence Metrics
tables both contain only a single column (named Dummy) that
can be hidden via the right-click context menu accessible in the
Relationships View, the fields list of Report View, and for import
datasets the Data View as well.

The columns of the three fact tables (Internet Sales, Reseller Sales,
and Sales and Margin Plan) are also hidden to provide users with an
intuitive display of groups of measures at the top of the fields list

followed by dimensions and their hierarchies.

The Home Table for a measure can be set by selecting it from the
fields list and choosing a table from the Home Table dropdown
on the Modeling tab in the Report View. As shown in the
following screenshot, the Internet Net Sales (PY YTD) measure is
selected and Date Intelligence Metrics is configured as its home table:

Home Table property for DAX Measures

Last refreshed date
The CurrentDate table, as described in the Data Source Parameters
section of Chapter 8, Connecting to Sources and Transforming
Data with M, contains only one column and one row,
representing the date at the time the source M Query was
executed. With this date value computed with each dataset
refresh and loaded into the Data Model, a DAX Measure can be
written to expose the date to the Power BI report visuals. In the
following screenshot from the Report View, a measure named
Last Refresh Msg uses a DAX variable to reference the parameter
table and then passes this variable to a text string:

Last refreshed message via the parameter table

It's common to include a last refreshed text message on at least
one report page of every published report. In the event the
source dataset has failed to refresh for several days or longer, the
text message will advise users of the issue. See Chapter
10, Developing DAX Measures and Security Roles for more
information on DAX variables.

For DirectQuery datasets, the M Query for the CurrentDate
parameter table uses standard SQL syntax within the
Value.NativeQuery() function, such as the following:

let Source = AdWorksSQLServer,
 View = Value.NativeQuery(Source, "Select CAST(Current_Timestamp as date) as [CurrentDate]")
in View

The Source variable references the AdWorksSQLServer staging query, as
described in the previous chapter. The Data
Source Parameters section of Chapter 8, Connecting to Sources
and Transforming Data with M, contains the M Query for the
CurrentDate parameter table in the import mode datasets.

Measure support logic
The purpose of the Measure Support table is to centralize DAX
expressions that can be reused by other measures. Since DAX
variables are limited to the scope of individual measures, a set of
hidden, intermediate measures avoids the need to declare
variables for each measure. The intermediate, or branching, DAX
measure expressions also make it easy and less error-prone to
implement a change as all dependent DAX measures will be
updated automatically. In this way, the Measure Support table
serves a similar function to the parameter and staging query
expressions, described in the previous chapter, for M Queries.

For this dataset, DAX expressions containing the ISFILTERED() and
ISCROSSFILTERED() functions can be used to determine the granularity
of the filter context for the Product, Sales Territory, and Date
dimension tables. If the user or report developer has applied a
filter at a granularity not supported by the Sales and Margin Plan fact
table, such as an individual product or date, a blank should be
returned to avoid confusion and incorrect actual versus plan
comparisons. The following DAX Measure tests the filter context
of the Date dimension table and returns one of two possible text
values—Plan Grain or Actual Grain:

Date Grain Plan Filter Test = SWITCH(TRUE(),
 NOT(ISCROSSFILTERED('Date')),"Plan Grain",
 ISFILTERED('Date'[Calendar Week in Year]) || ISFILTERED('Date'[Date]) || ISFILTERED('Date'[Weekday]) ||ISFILTERED('Date'[Calendar Yr-Wk]), "Actual Grain", "Plan Grain")

Similar filter test measures can be created for the Sales Territory
and Product dimension tables. All three measures should be
hidden from the Report View, and the Home Table property

should be set to Measure Support. Once these dimension-
specific measures have been defined, a final support measure
can integrate their results, as shown in the following example:

Plan Grain Status = IF([Date Grain Plan Filter Test] = "Plan Grain" && [Product Grain Plan Filter Test] = "Plan Grain" && [Sales Territory Grain Plan Filter Test] = "Plan Grain", "Plan Grain", "Actual Grain")

Given the logic built into the four hidden measure support
expressions, DAX Measures can reference the results and deliver
the intended conditional behavior in report visualizations, as
shown in the following example of a variance-to-plan measure:

Internet Net Sales Var to Plan = IF([Plan Grain Status] = "Actual Grain",BLANK(),
[Internet Net Sales] - [Internet Net Sales Plan Amt])

In the following report, the Internet Net Sales Plan and Internet Net
Sales Var to Plan measures both return blank values when a product
color or calendar year-week value has been selected from either
slicer visual:

Sales and Margin Plan measures are blank due to the Product Color filter

The Product Category and Sales Territory country visuals do not cause
the sales plan measures to return blank values since these
columns are within the granularity of the Sales and Margin Plan fact
table.

Relationships
Relationships play a central role in the analytical behavior and
performance of the dataset. Based on the filters applied at the
report layer and the DAX expressions contained in the measures,
relationships determine the set of active rows for each table of
the model to be evaluated. It's critical that the dataset designer
understands how relationships drive report behavior via cross-
filtering and the rules that relationships in Power BI must
adhere to, such as uniqueness and non-ambiguity.

Uniqueness
Relationships in Power BI Data Models are always defined
between a single column from each of the two tables. One of
these two columns must uniquely identify the rows of its table,
such as the Currency Key column from the Currency table in the Fact-
to-dimension relationships section earlier in this chapter. Power
BI will throw an error message if a row with a duplicate value for
the relationship column is attempted to be loaded to the one side
of the relationship, as shown in the following screenshot:

Uniqueness enforced in relationships

Power BI and SSAS Tabular models do not enforce or require
referential integrity as with relationship uniqueness, however.
For example, a sales fact table can contain transactions for a
customer that is not present in the customer dimension table. No
error message will be thrown and DAX measures that sum the
sales table will still result in the correct amount, including the
new customer's transactions. A blank row is added to the
customer dimension table by default for these scenarios (also
known as early-arriving facts) and this row is visible when the
measure is grouped by columns from the customer dimension

table in report visualizations. If missing dimensions is an issue,
the dataset designer can work with the data source owner and/or
the data warehouse team to apply a standard foreign key value
(for example, -1) to these new dimension members within an
extract-transform-load (ETL) process and a corresponding
row can be added to dimensions with an unknown value for each
column.

In the rare event that a text column is used for a relationship, note that
DAX is not case-sensitive like the M language. For example, M functions
that remove duplicates, such as Table.Distinct(), may result in unique text
values (from M's perspective), such as Apple and APPLE. When these values
are loaded to the data model, they will be considered duplicates and thus
relationships will not be allowed. To resolve this issue, a standard casing
format can be applied to the column within a Table.TransformColumns()
function via text functions, such as Text.Proper() and Text.Upper(). Removing
duplicates after the standard casing transformation will result in a
column of unique values for the data model.

Ambiguity
Data model relationships must result in a single, unambiguous
filter path across the tables of the model. In other words, a filter
applied to one table must follow a single path to filter another
table—the filter context cannot branch off into multiple
intermediate tables prior to filtering a final table. In the
following screenshot from the Relationships View, only one of
the two relationships to the Auto Accidents fact table is allowed to be
active (solid line):

Ambiguous relationships avoided

When a filter is applied to the Auto Owners table, the inactive
relationship between Insurance Polices and Auto Accidents provides a
single, unambiguous filter path from Auto Owners to Auto Accidents via
relationships with the Automobiles table. If the model author tries to
set both relationships to the Auto Accidents table as active, Power BI
will reject this relationship and advise of the ambiguity it would
create, as shown in the following screenshot:

Ambiguity error in the Edit Relationship Dialog

Given the active relationship between the Automobiles and Auto
Accidents tables, if the relationship between Insurance Policies and Auto
Accidents was active, the Auto Owners table would have two separate
paths to filter the Auto Accidents table (via Insurance Policies or via
Automobiles).

Model metadata
The consistent and complete application of metadata properties,
such as Default Summarization and Data Category, greatly affect
the usability of a dataset. With a solid foundation of tables,
column data types, and relationships in place, dataset designers
and BI teams should consider all primary metadata properties
and their implications for user experience as well as any
additional functionality they can provide.

Visibility
Every table, column, and measure that isn't explicitly needed in
the Report View should be hidden. This usually includes all
relationship columns and any measure support tables and
measure expressions.

If a column is rarely needed or only needed for a specific report,
it can be temporarily unhidden to allow for this report to be
developed and then hidden again to maximize usability. Numeric
fact table columns that are referenced by DAX Measures (for
example, quantity) should be hidden from the fields list, as the
measures can be used for visualizing this data.

As discussed in the Parameter tables section, when all columns
of a table are hidden from the Report View and at least one DAX
Measure identifies the given table as its home table, a measure
group icon (calculator symbol) will appear in the fields list. This
clear differentiation between the measures and dimension
columns (attributes) is recommended, especially if business
users will be developing their own reports based on the dataset.

Tables with both visible columns and measures will force business users
and report developers to navigate between these different elements in the
fields list. This can be onerous given the volume of DAX Measures for
common fact tables. If it's necessary to expose one or a few fact table
columns permanently, consider migrating some or all of the DAX
Measures for the table to a parameter table to simplify navigation.

Column metadata
Dataset designers should review the columns of each table
exposed to the Report View and ensure that appropriate
metadata properties have been configured. These settings,
including any custom sorting described earlier, only need to be
applied once and can significantly improve the usability of the
dataset.

Default Summarization
The Default Summarization property should be revised from
Power BI's default setting to the Do not summarize value for all
columns. Power BI will apply a Default Summarization setting of
Sum for all columns with a numeric data type (whole number,
fixed decimal number, decimal number) when a table is first
loaded to the data model.

As shown in the following screenshot, a summation symbol (∑)
will appear next to the field name in the fields list if a Default
Summarization other than Do not Summarize is enabled:

Default Summarization for numeric columns

As illustrated in the previous image, the Default Summarization
property for a column can be accessed via the Modeling tab of
the Data View. Additionally, as with other metadata properties,
Default Summarizaton can also be accessed from the Report
View. As mentioned in the Data View section earlier,
implementing metadata changes, such as Default Summarization
and Data Category, via the Modeling tab from the Report View is
the only option for DirectQuery models.

If a user selects a column with Default Summarization enabled,
the specific aggregation specified by the property (for example,
Sum, Average) will be returned rather than the grouping
behavior of Do not summarize. In many cases, the numeric
column is only used to group measures, such as Internet Net Sales
by Product Dealer Price, and DAX Measures can be written for any
needed calculation logic. Additionally, Default Summarization
can create confusion, such as when a user expects a sum
aggregation based on the summation symbol but the model
author has applied an alternative default summarization (for
example, Minimum, Average). Alternatively, the names assigned
to DAX measures, such as Average Product Dealer Price, make it clear
which aggregation is being applied.

For these reasons, it's recommended to convert the default
summarization setting to Do not Summarize. A broader concept
of this recommendation is to build essential DAX Measure
expressions into the dataset, as described in Chapter
10, Developing DAX Measures and Security Roles, to make
Power BI datasets more flexible and powerful for users and
report developers.

Data format
The default formatting Power BI applies to columns and
measures should also be revised to a corporate standard or a
format applicable to the column or measure. For example, the
default full date format of 'Friday July 1, 2011' can be revised to
the more compact (mm/dd/yyyy) format of 7/1/2011. Likewise,
the currency format for measures calculating financial data can
be revised to display two decimal places and the thousands
separator can be added to numeric measures.

Business users and report developers do not have the ability to
change column and measure formatting when connecting to the
published dataset from Power BI or Excel. Therefore, it's
important to choose widely accepted data formats and formats
that lend themselves to intuitive data visualizations.

Data category
By default, Power BI does not assign columns to any of the 13
available data categories. Assigning geographic categories, such
as City, to columns helps Power BI determine how to display
these values on map visualizations. For example, certain city
names, such as Washington, are also associated with state or
province names and without an assigned data category, map
visuals would have to guess whether to plot the city or the state.

Currently 10 of the 13 column data categories are related to geography,
including County, Country/Region, Continent, City, Latitude, Longitude,
Postal Code, Address, Place, and State or Province.

The Web URL Data Category can be used to enable the initiation
of emails from Power BI report visuals. In the following table
visual, the Employee Email Link column contains mailto values (that is,
mailto://John@adworks.com) and the URL icon property under Values
has been set to On:

Web URL Data Category for Mailto Link column
Without specifying the Web URL Data Category of the Employee Email Link
column, the values will appear as normal text. With the Web URL Data
Category specified, the full mailto link will be displayed in the table visual
by default; this can also be used to initiate an email. Both the Web URL
Data Category specification and the URL icon property (set to On) are
required to display the email icon.

The Image URL Data Category can be used to expose images in
report visualizations, such as the following example with the
custom Chiclet slicer:

Image URL Data Category used for Chiclet slicer visual

See Chapter 12, Applying Custom Visuals, Animation, and
Analytics for additional details on the Chiclet slicer.

The Barcode Data Category, the only other non-geographic
category beyond Web URL and Image URL, can be used by the
Power BI mobile applications to scan individual items from
mobile devices.

Field descriptions
Descriptions can be added to the measures and columns of a
data model to aid users during report development. Once
descriptions have been applied and the dataset has been
published to the Power BI service, users connected to the dataset
via reports can view the descriptions as they hover over the fields
in the fields list. This feature is particularly useful in
communicating the business logic contained in measures, such
as whether discounts are included or excluded in the Internet Net
Sales measure.

Although field descriptions are recommended, particularly for measures
that contain custom or complex logic, they are not a substitute for the
formal documentation of a dataset. In most scenarios, the field
description will only be used as a convenient reminder of the essential
logic or meaning and thus can be more concise than the official
corporate definition of the column or measure. A detailed example of
developing documentation reports of a Power BI Dataset via Dynamic
Management Views (DMVs) and Power BI Desktop can be found in
Chapter 10 of Microsoft Power BI Cookbook (https://www.packtpub.com/big-data-and-b
usiness-intelligence/microsoft-power-bi-cookbook) by Packt Publishing.

In the following example, a report author is connected to a
published Power BI dataset and has hovered over the Internet Gross
Product Margin measure:

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Field Descriptions as Tooltips in the fields list
The descriptions can only be viewed from Power BI Desktop or the
Power BI service. Users connecting to the dataset from Excel via the
Power BI Publisher for Excel can't see the descriptions. Additionally, field
descriptions are exclusive to the fields list and are not displayed in
visuals on the report canvas. Chapter 11, Creating and Formatting Power BI
Reports, contains additional information on Power BI reports created
via Live connections to published Power BI datasets.

Descriptions can be applied by enabling the FIELD
PROPERTIES pane from the View tab in the Report View. In the
following screenshot, the FIELD PROPERTIES pane exposes the
Name and Description of the selected measure (Internet Gross
Product Margin):

FIELD PROPERTIES pane

Users connected to the dataset via Live connections can view the
descriptions via the FIELD PROPERTIES pane. In this context,
the Name and Description properties are read-only.

DMVs can be used to retrieve the descriptions applied to measures and
columns of a dataset. With the dataset open in Power BI Desktop, the
user can connect from a client application, such as DAX Studio, to
execute the relevant DMV. The Description field of both the MDSCHEMA_MEASURES
and the TMSCHEMA_MEASURES DMVs contains the description that has been
applied to DAX Measures. The Description field in the TMSCHEMA_COLUMNS DMV
provides the description applied to columns.

Optimizing performance
One of the main reasons for creating a dataset, particularly an
import mode dataset, is to provide a performant data source for
reports and dashboards. Although Power BI supports traditional
reporting workloads, such as email subscriptions and view-only
usage, Power BI empowers users to explore and interact with
reports and datasets. The responsiveness of visuals for this self-
service workload is largely driven by fundamental data model
design decisions, such as the granularity of fact and dimension
tables.

Additional performance factors outside the scope of this chapter
include the hardware resources allocated to the dataset, such as
with Power BI Premium capacities (v-cores, RAM), the efficiency
of the DAX Measures created for the dataset, the design of the
Power BI reports that query the dataset, and the volume and
timing of queries generated by users. Beyond the DAX measures
described in Chapter 10, Developing DAX Measures and Security
Roles these other factors are outside the control of the dataset
designer and will be addressed in other chapters, such as Chapter 1
9, Scaling up with Premium and Analysis Services.

Import
The performance of an import mode dataset is largely driven by
fundamental design decisions, such as the granularity of fact and
dimension tables. For example, large dimension tables with
more than a million unique values, such as customer IDs or
product IDs will produce much less performant report queries
than small dimensions with only 100 to 1,000 unique values.
Likewise, DAX Measures that access columns containing
thousands of unique values will perform much more slowly than
measures that reference columns with a few unique values. A
simplistic but effective understanding is that higher levels of
cardinality (unique values) result in greater memory
consumption via reduced compression and CPUs require
additional time to scan greater amounts of memory.

An import mode designer should be cautious about the performance
implications of relationships to large dimension tables. Although
usability is somewhat compromised, a separate but less granular
dimension containing only the most common columns can be created to
drive more efficient report queries. For example, business users may
rarely need to access individual product SKUs and would prefer the
performance benefit provided by a smaller dimension table that contains
only product categories and product subcategories.

Columnar compression
It's important to understand the columnar layout and internal
storage of the import mode datasets. Power BI creates individual
segments of approximately one million rows and stores separate
memory structures for column data, the dictionary of unique
values for columns, relationships, and hierarchies.

In the following diagram, three segments are used to store a fact
table of 2.8 million rows:

Columnar storage of import mode datasets

Since only the columns required for a query are scanned during
query execution, a relatively expensive column in terms of
memory consumption (due to many unique values), such as Order
#, can be stored in the dataset without negatively impacting
queries that only access other columns. Removing fact table

columns or reducing the cardinality of fact table columns that
are not used in queries or relationships will nonetheless benefit
the storage size and resources required to refresh the dataset.
Fewer fact table columns may also enable Power BI to find a
more optimal sort order for compression and thus benefit the
query performance.

Eliminate any DAX-calculated column on fact tables as these columns
are not compressed as efficiently as imported columns. If necessary,
replace DAX-calculated columns with the equivalent expression in the
source M Query or SQL View. Additionally, per the Fact table columns
section earlier in this chapter, remove columns that can be computed
within DAX Measures via simple expressions (+,-,/,*). For example, the
Sales column from the Columnar Storage example image can be excluded from
the Import dataset given the Price and Qty columns.

During query execution over tables with more than one segment,
one CPU thread is associated per segment. This parallelization is
limited by the number of CPU threads available to the dataset
(for example, Power BI Premium P1 with four backend v-cores),
and the number of segments required to resolve the query.
Therefore, ideally, the rows of fact tables can be ordered such
that only a portion of the segments are required to resolve
queries. Using the example of the 2.8M-row fact table, a query
that's filtered on the year 2017 would only require one CPU
thread and would only scan the required column segments
within Segment 3.

The internal order of fact table rows cannot be dictated by the dataset
designer as Power BI determines the optimal order that will lead to the
highest compression during dataset refreshes. However, dataset
designers can add a sorting transformation to the M query of a fact table
(Table.Sort()) such that Power BI will, at a minimum, consider this
particular order during its processing. Whether Power BI used the
particular sort order can be determined by analyzing the memory
footprint of the sorted column before and after the data is loaded. If the
size of the sort by column is significantly reduced following the refresh
operation, Power BI took advantage of the order by.

Memory analysis via DMVs
The same DMVs that provide information about SSAS Tabular
databases are also available for Power BI datasets. Querying
these DMVs can provide schema information, such as the
columns used to define relationships, the definitions of DAX
Measures, and the memory usage of columns and other
structures. From a memory analysis standpoint, the two most
important DMVs are DISCOVER_STORAGE_TABLE_COLUMNS and
DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS.

In the following query from DAX Studio, the dictionary size of
each column of a Power BI dataset is retrieved via the
DISCOVER_STORAGE_TABLE_COLUMNS DMV:

Dictionary size by Column

With the Power BI dataset (the PBIX file) open on the local
machine, the DAX Studio application can connect to the dataset
and SQL queries can be executed against the DMVs, just like

normal DAX queries.

The DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS DMV contains information
on four separate memory structures: user hierarchies, system
hierarchies, relationships, and the compressed data segments
per column. Dataset designers are generally most interested in
the size and distribution of data segments by column and this
can be retrieved with the following SQL query:

Data size per Column Segment

The first two characters of the Table_ID column identify the data
structure represented by the row. For example, H$ refers to
system column hierarchies, U$ refers to user-defined hierarchies,
and R$ refers to relationships. All other rows of the DMV, the
rows in which the second character is not a dollar sign, refer to
column data segments. In this query, the WHERE clause containing
the LEFT() and RIGHT() text functions and the <>'$' condition is used
to retrieve only the column data segments.

The Dictionary_Size column and the Used_Size column from the two respective
DMVs are stored in bytes. For a more intuitive analysis of this data,
particularly with large datasets, it can be helpful to convert from bytes

to megabytes by dividing by 1,048,576.

Fact and dimension tables with over a million rows will contain
more than one segment with each segment representing
approximately one million rows. To analyze the DMV query
results with multiple segments, it's necessary to group the result
set by column and use aggregation functions (sum, average)
against the Used_Size column. Analyzing the memory usage data
from SSAS DMVs is generally performed outside of DAX Studio
in tools such as Excel or Power BI.

A separate Power BI dataset (the PBIX file) exclusively dedicated to
analyzing the memory usage of Power BI datasets can be an effective
method of streamlining the data retrieval and visualization process. A
detailed example of developing and maintaining one of these datasets is
included in Chapter 10 of the Microsoft Power BI Cookbook (https://www. pack
tpub. com/big-data-and-businessintelligence/microsoft-power-bi-cookbook). At a high level, this
solution involves executing M Queries against a running Power BI
dataset to retrieve DMVs, such as the two DMVs identified, and then
model and visualize this data.

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

DirectQuery
The dataset designer has less control over the performance of
DirectQuery datasets given that data storage and query
execution is the responsibility of the source system. However,
dataset designers can ensure that the DAX functions used in
measures take advantage of the source system resources and can
partner with source system owners and experts to test
alternative data source optimizations, such as the columnstore
index for SQL Server. Additionally, as advised earlier regarding
the Assume Referential Integrity relationship property,
performance can be significantly improved by generating inner-
join SQL statements.

Optimized DAX functions
If the allowed unrestricted measures for DirectQuery mode
setting is enabled in Power BI Desktop, all DAX functions can be
used in measures. However, only certain DAX functions are
natively converted to SQL expressions for execution by the
source system. The list of these optimized functions is available
in the MS documentation: http://bit.ly/2oK8QXB. To the greatest
extent possible, dataset designers should ensure that optimized
functions are leveraged in measures and that non-optimized
functions are only used on small, pre-filtered or aggregated
query results.

http://bit.ly/2oK8QXB

Columnstore and HTAP
Business intelligence queries generated from tools such as Power
BI are more suited for columnar data stores and most
DirectQuery source systems offer a columnar feature to deliver
improved query performance. For Microsoft SQL Server, the
columnstore index is recommended for large fact tables and this
index eliminates the need to maintain traditional B-tree indexes
or to apply row or page compression. Additionally, a
combination of non-clustered columnstore indexes and in-
memory table technologies can be used to support hybrid
transactional and analytical processing (HTAP)
workloads. For example, the Power BI queries against the
DirectQuery dataset would utilize the columnstore index without
impacting the OLTP workload of the database.

The details of these features and configurations are outside the
scope of this book but at a minimum the owners or experts on
the DirectQuery data source should be engaged on the
performance of the Power BI dataset. The following URL
provides guidance on designing columnstore indexes for SQL
Server database services (for example, Azure SQL Database,
Azure SQL Data Warehouse) and on-premises SQL Server
database environments: http://bit.ly/2EQon0q.

The Related Tasks section of the Columnstore indexes – Design
guidance documentation referenced in the preceding URL
contains links for the T-SQL DDL statements associated with
implementing the columnstore index. In most scenarios, the
dataset designer in a Power BI project or the author of an
Analysis Services model is not responsible or authorized to

http://bit.ly/2EQon0q

optimize data sources such as with the columnstore index.
However, the dataset designer can regularly collaborate with this
subject matter expert or team as the demands and requirements
of the dataset change. For example, the dataset designer can use
tools, such as DAX Studio and SQL Server Profiler as described
in the Microsoft Power BI Cookbook (https://www.packtpub.com/big-data
-and-business-intelligence/microsoft-power-bi-cookbook), to capture the
common or important SQL queries generated by Power BI
reports and then share this information with the data warehouse
team.

Alternatively, the database or data warehouse team can run a
trace against a data source system per the DirectQuery report
execution section of Chapter 8, Connecting to Sources and
Transforming Data with M, during a test query workload from
Power BI. This trace data could be used to identify the specific
columns, tables, or expressions associated with slow queries and
thus inform database modification decisions.

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Summary
This chapter built on the queries from Chapter 8, Connecting to
Sources and Transforming Data with M, to implement import
and DirectQuery analytical data models. Relationships were
created between fact and dimension tables as well as between
bridge tables and the Sales and Margin Plan to enable actual versus
plan reporting and analysis. Additionally, the fundamentals of
designing Power BI models and all top features were reviewed,
including bidirectional cross-filtering, inactive relationships, and
hierarchies. Moreover, detailed guidance on metadata, such as
data categories and DMVs available for analyzing memory usage,
was provided.

The following chapter continues to build on the dataset for this
project by developing analytical measures and security models.
The DAX expressions implemented in this chapter will directly
leverage the relationships defined in this chapter and ultimately
drive the visualizations and user experience demonstrated in
later chapters.

Developing DAX Measures and
Security Roles
This chapter will detail the implementation of DAX measures
and security roles for the dataset developed in the previous two
chapters. First, a set of base measures for each business process
are created, representing business definitions such as gross and
net sales, cost of sales, and margin percentages. The base
measures are then leveraged in the development of date
intelligence calculations including year-to-date (YTD) and
year-over-year (YOY) growth. Additionally, a set of customs
measures are created, including exceptions, rankings, and KPI
targets to further extract insights from the dataset and simplify
report visualizations.

This chapter will also contain examples of dynamic security
models in which the identity of the logged in user is used to filter
the dataset. Finally, guidance will be provided on testing the
performance of DAX expressions with DAX Studio.

In this chapter, we will review the following topics:

DAX measures

Filter and row contexts

DAX variables

Base measures

Date intelligence metrics

Dimension metrics

Ranking metrics

Security roles

Dynamic row-level security

Performance testing

DAX measures
All analytical expressions ranging from simple sums and
averages to custom, complex statistical analyses are
implemented within DAX measures. Most measure expressions
will reference and aggregate the numeric columns of fact tables,
which are hidden from the Report View, as we have seen in per
the previous chapter. Additional DAX measures can include
filtering conditions which supplement or override any filters
applied in Power BI reports, such as the net sales amount for
first-year customers only. Measures can also evaluate text
columns from dimension tables, such as the count of states or
provinces with sales and return text and date values.

Just like the M query language, DAX is a rich, functional
language that supports variables and external expression
references. Multiple variables can be defined within a DAX
measure to improve readability, and the results of other
measures can be referenced as well, such as the Plan Grain Status
measure in Chapter 9, Designing Import and DirectQuery Data
Models. These layers of abstraction and the built-in code editing
features of Power BI Desktop including IntelliSense and
colorization, enabling dataset designers to embed powerful yet
sustainable logic into datasets.

In addition to the DAX measures authored for a Power BI Dataset,
Power BI Desktop's Analytics pane can be used to create metrics specific
to a given visual, such as the trend line, min, max, an average of a metric
on a line chart. The Analytics pane is reviewed in Chapter 12, Applying
Custom Visuals, Animation and Analytics.

Measure evaluation process
Each value in the report, such as the $600 from the matrix
visual, is computed according to the following four-step process:

1. Initial Filter Context:

1. This includes all filters applied within and outside
the report canvas by the report author

2. Selections on slicer visuals and the rows and
columns of the table and matrix visuals represent
on-canvas filters

3. Report, page, visual, and drillthrough filters
represent off-canvas filters that also contribute to
the initial filter context

2. Filter Context Modified via DAX:

1. For base measures and other simplistic
expressions, the initial filter context from the
report is left unchanged

2. For more complex measures, the CALCULATE()
function is invoked to further modify the initial
filter context:

1. Via CALCULATE(), the initial filter context can
be removed, replaced, or supplemented
with an additional filter condition

2. In the event of a conflict between the
initial filter context from the report (for
example, slicers, report level filters) and
the filter condition embedded in the DAX
measure, by default, the DAX measure will
override the report filter condition

3. Relationship Cross-Filtering:

1. With each table filtered from steps 1 and 2, the
filter context is transferred across cross-filtering
relationships

2. In most cases, the filtered dimension tables filter
the related fact tables via single direction cross-
filtering

3. However, as described in Chapter 9, Designing
Import and DirectQuery Data Models,
bidirectional cross-filtering allows the filter
context to also transfer from the many side of a
relationship to the one side

4. Measure Logic Computation:

The computation logic of the measure (for
example, DISTINCTCOUNT(), COUNTROWS()) is finally
evaluated against the remaining active rows for
the given table or column referenced

For common and base measures, this is simply
the set of remaining or active fact table rows

However, as shown in the following Dimension
metrics section, other DAX measures will
reference dimension tables, and thus it's
important to understand how these tables are
impacted by relationship filtering and DAX
expressions

This four-step process is repeated for each value of the report
independently. Consequently, reports and visuals which are
dense in values require more computing resources to refresh and
update based on user filter selections. Large tabular report
visuals with many columns and rows are particularly notorious
for slow performance, as this forces the DAX engine to compute
hundreds or thousands of individual values.

Although report authors and business analysts will not create DAX
measures, it's important that they have a basic understanding of the
filter context and measure evaluation processes. For example, the report
author should understand the cross-filtering relationships of the data
model (single or bidirectional) and how certain DAX measures impact
the filters applied in reports. Similarly, business analysts should be able
to explain to business users why certain report behaviors and results
occur.

Row context
In addition to filter context, several DAX functions such as
FILTER() and SUMX() are iterators and execute their expressions per
row of a given table. The set of rows to evaluate from this table is
always defined by the filter context which was described earlier
in this chapter. The expression parameter of iterating functions
can aggregate the rows of a table or can invoke the filter context
of the specific row being iterated via the CALCULATE() function or a
measure reference.

Calculated DAX columns are used to illustrate row context. In
the following screenshot, four calculated columns have been
added to a Date table and reference the Weekday Sort column:

The row context in calculated columns

All four calculated columns simply add the value 1 to the Weekday
Sort column, but achieve their results via distinct expressions:

Weekday Sort Plus 1 (SUM) = SUM('Date'[Weekday Sort]) + 1
Weekday Sort Plus 1 CALC = CALCULATE(SUM('Date'[Weekday Sort])) + 1
Weekday Sort Plus 1 Measure = [Weekday Sort Summed] + 1
Weekday Sort Plus 1 = 'Date'[Weekday Sort]+1

The Weekday Sort Plus 1 CALC column and the Weekday Sort Plus 1
Measure column represent the concept of context transition. These
two columns invoke the filter context (context transition) of the
given row via the CALCULATE() function or implicitly via the
reference of an existing measure, respectively:

Weekday Sort Plus 1 (SUM) computes the sum of the Weekday Sort
column plus one and repeats this value for each row

Weekday Sort Plus 1 CALC embeds a SUM() function within
the CALCULATE() function prior to adding one

Weekday Sort Plus 1 Measure references an existing measure
which sums the Weekday Sort column and then adds one

Weekday Sort Plus 1 references the Weekday Sort column of the
Date table and adds one

The Weekday Sort Plus 1 (SUM) expression demonstrates that
aggregation functions, in the absence of CALCULATE() or the implicit
CALCULATE() when invoking measures, ignore row context. The three
other columns all operate on a per-row basis (row context) but
achieve their results via three different methods. The Weekday Sort
Plus 1 column represents the default behavior of expressions
executing in a row context such as calculated columns, FILTER(),
and other iterating DAX functions.

To develop more complex DAX measures, it can be necessary to ignore
the row context of the input table, such as the Weekday Sort Plus 1 SUM()
example or explicitly invoke the row context of the table.

Scalar and table functions
The majority of DAX functions return a single value based on an
aggregation or a logical evaluation of a table or column. For
example, the COUNTROWS() and DISTINCTCOUNT() functions return
individual numeric values based on a single table and a single
column input parameter, respectively. The DAX functions which
return individual values as their output, including information
functions, such as ISBLANK() and LOOKUPVALUE(), are referred to as
scalar functions. For relatively simple datasets and at early
stages in projects, most DAX measures will reference a single
scalar function with no other modifications, such as with
CALCULATE().

In addition to scalar functions, many DAX functions return a
table as the output value. The tables returned by these functions,
such as FILTER() and ALL(), are used as input parameters to other
DAX measure expressions to impact the filter context under
which the measure is executed via the CALCULATE() function. The
DAX language has been extended to support many powerful
table functions, such as TOPN(), INTERSECT(), and UNION(), thus
providing further support for authoring DAX measures.

In addition to serving as table input parameters to DAX measures, the
results of DAX table functions can be returned and exposed to client
reporting tools. The most common example of this is in developing a
paginated reporting services report either with SQL Server Reporting
Services (SSRS) or the Power BI Report Server based on an Analysis
Services Tabular model. Additionally, DAX table functions can return a
summarized or filtered table within a Power BI dataset based on the
other tables in the dataset.

As models grow in complexity and as model authors become
more familiar with DAX, new measures increasingly leverage a

combination of scalar functions (or existing measures based on
scalar functions) and table functions. Per the DAX Variables
section later in this chapter, both scalar and table values (based
on scalar and table functions, respectively) can be stored as
variables to further support abstraction and readability.

The CALCULATE() function
The CALCULATE() function is the most important function in DAX as
it enables the author to modify the filter context under which a
measure is evaluated. Regardless of the fields used and filters
applied in reports, the filter parameter input(s) to CALCULATE() will
be applied. Specifically, the CALCULATE() function will either add a
filter to a measure expression (for example, Color = "Red"), ignore
the filters from a table or column (for example, ALL(Product)), or
update/overwrite the filters applied within a report to the filter
parameter specified in CALCULATE().

The syntax of CALCULATE() is the following CALCULATE(<expression>,
<filter1>, <filter2>). Any number of filter parameters can be
specified including no filter parameters such as
CALCULATE(SUM(Sales[Sales Amount])). When multiple filter parameters
have been specified, the function will respect all of them together
as a single condition via internal AND logic. The expression
parameter is evaluated based on the new and final filter context
applied via the filter parameters.

In the following measure, any filter applied to any column from
the Product or Sales Territory tables will be ignored by the
calculation:

ISales Row Count (Ignore Product and Territory) =
CALCULATE(COUNTROWS('Internet Sales'),ALL('Product'),ALL('Sales Territory'))

The preceding measure represents one simple example of a table
function (ALL()) being used in conjunction with a scalar function

(COUNTROWS()) via CALCULATE(), as described in the previous session.

There are multiple forms of the ALL() function beyond ALL(table).
The ALL() function can be used to ignore the values from a single column
or multiple columns, such as, the following two
examples: (All('Customer'[Customer City]) and ALL('Customer'[Customer City],
'Customer'[Customer Country]). Additionally, the ALLEXCEPT() function only allows
certain columns specified to impact the filter context, and the
ALLSELECTED() function ignores filters from inside a query but allows filters
from outside the query.

Just as the CALCULATE() function is used to modify the filter context
of scalar value expressions, the CALCULATETABLE() function is used to
modify the filter context of expressions which return tables. For
example, the following query expression returns all columns
from the product dimension table and only the rows which
match the two filter parameter conditions specified:

EVALUATE
CALCULATETABLE('Product',
'Product'[Product Category] = "Bikes",
'Product'[Product Dealer Price] > 2100)

The modified table result from CALCULATETABLE() can then be used as
a parameter input to another table function such as FILTER() or as
a filter parameter to CALCULATE().

Related tables
It's possible to reference other tables in the data model from
within a row context via the RELATED() and RELATEDTABLE() functions.
In the following screenshot from Data View of an import mode
dataset, three calculated columns have been added to a Date
dimension table with expressions referencing the Freight column
of the Internet Sales fact table:

Row context with RELATEDTABLE()

 The DAX expressions used for each column are as follows:

Related Internet Freight Cost (Sum) =
SUMX(RELATEDTABLE('Internet Sales'),(SUM('Internet Sales'[Freight])))
Related Internet Freight Cost (Measure) =
SUMX(RELATEDTABLE('Internet Sales'),[Internet Sales Freight Cost])
Internet Sales Freight Cost Measure = [Internet Sales Freight Cost]

Only the Internet Sales Freight Cost Measure returns the correct freight
cost amount for each date. The Related Internet Freight Cost (Sum)
column computes the total freight cost on the entire Internet Sales
table and uses this value for each related row before summing
the result. For example, nine rows on the Internet Sales table have

a date of 1/3/2016 and the sum of the Freight column on the Internet
Sales table is $618,839. Given the SUMX() function, the $5,569,554 value is
the result of 9 (rows) multiplied by $618,839.

The Related Internet Freight Cost (Measure) also overcounts the freight
cost for the day, specifically, whenever multiple rows of the same
date have the same freight cost, the sum of these values is
counted for each row. For example, five rows on the Internet Sales
table have a date of 1/2/2016 and three of these rows have the same
freight cost of $89.46. Given the SUMX() function, the value $268.37
(3 * $89.46) is added three separate times prior to adding the
other two freight cost values ($17.48 and $85.00) to produce $908.

The RELATEDTABLE() function is used to reference tables on the many sides of
one-to-many relationships. Likewise, the RELATED() function is used to
reference tables on the one side of many-to-one relationships. For
example, a calculated column or the row context of an iterating function
such as SUMX() on the Internet Sales fact table would use RELATED() to access a
dimension table and apply logic referencing the dimension table per row
of the Internet Sales table.

The FILTER() function
The FILTER() function is one of the most important and powerful
functions in DAX in that it allows complex logic to fully define
the set of rows of a table. FILTER() accepts a table as an input and
returns a table with each row respecting its defined condition.
The FILTER() function is almost always used as a parameter to a
CALCULATE() function and can add to the existing filter context or
redefine the filter context by invoking ALL() as its table input. The
date intelligence measures described later in this chapter utilize
FILTER() to fully define the set of Date rows for the filter context.

In the following DAX measure, the FILTER() function is utilized
against the Date table and implements a condition based on the
existing Internet Gross Sales measure:

Days with over 15K Gross Internet Sales =
 CALCULATE(COUNTROWS('Date'),
 FILTER('Date', [Internet Gross Sales] > 15000))

The ability to directly reference DAX measures is unique to the FILTER()
function. For example, the following measure expression is not allowed
by the DAX engine: CALCULATE(COUNTROWS('Date'), [Internet Gross Sales] > 15000).

The Days with over 15K Gross Internet Sales measure and the Internet
Gross Sales base measure are used in the following Power BI
report:

DAX measure with FILTER

Given that the FILTER() function simply references the Date table
and does not remove any filters via ALL(), the measure executes on
each date contained in the matrix visual to return a 1 or a blank.
When no dates are on the visual such as the subtotal row or the
card visual, the total number of days that meet the condition
(170 for the year 2015) is returned. If the Internet Gross Sales
measure was not included in the table visual, by default Power BI
would only display the dates with a 1 value for the Days with over a
15K Gross Internet Sales measure.

Given both its iterative (row-by-row) execution and the potential to
apply complex measures to each row, it's important to use the FILTER()
function carefully. For example, DAX measures should not use FILTER()
directly against large fact tables. Additionally, FILTER() should not be used
when it's not needed for simple measures such as the following two
examples CALCULATE([Internet Gross Sales],'Product'[Product Category] = "Bikes")
CALCULATE([Reseller Gross Sales],'Product'[Product Color] IN {"Red",

"White"},Promotion[Discount Percentage] > .25).

DAX variables
Variables can be defined within DAX measures and primarily
serve to improve the readability of DAX expressions. Rather than
creating and referencing separate DAX measures, variables
provide an inline option, thereby limiting the volume of distinct
measures in a dataset. As a basic example of variable syntax, the
"Last Refreshed" text message described in the Parameter Tables
section of Chapter 8, Connecting to Sources and Transforming
Data with M, uses a DAX variable in its expression, as follows:

Last Refresh Msg =
 VAR CurrentDateValue = MAX('CurrentDate'[CurrentDate])
 RETURN
 "Last Refreshed: " & CurrentDateValue

The VAR function is used to name a variable and the RETURN keyword
allows for the variable's result to be referenced by this name. In
this example, the CurrentDateValue variable retrieves the date stored
in the CurrentDate parameter table, and a string of text is
concatenated with the variable to generate the text message.

Variables can sometimes be implemented to improve the performance of
slow measures. Variables are only evaluated once and their resulting
values (a scalar value or a table) can be referenced multiple times.
Measures which produce fewer storage engine queries will almost
always execute faster and make better use of hardware resources.
Therefore, any DAX measure or query which makes multiple references
to the same expression logic can be a good candidate for DAX variables.

A common use case for DAX variables is to split up the
components of an otherwise more complex DAX expression. In
the following example, six DAX variables are used to produce a

filtered distinct count of accessory products and a filtered
distinct count of clothing products:

Reseller High Value Accessory and Clothing Products =
/*
Accessory category products with over 20K in net sales and over 32% net margin since last year
Clothing category products with over 55K in net sales and over 28% net margin since last year
Enable filtering from dimension tables related to Reseller Sales
*/
VAR AccessorySales = 20000 VAR AccessoryNetMargin = .32
VAR ClothingSales = 50000 VAR ClothingNetMargin = .28
//Distinct Accessory Products
VAR AccessoryProducts =
CALCULATE(DISTINCTCOUNT('Product'[Product Alternate Key]),
 FILTER(
 SUMMARIZE(
 CALCULATETABLE('Reseller Sales',
 'Date'[Calendar Year Status] IN {"Current Calendar Year", "Prior Calendar Year"},
 'Product'[Product Category] = "Accessories"),
 'Product'[Product Alternate Key]),
 [Reseller Net Margin %] >= AccessoryNetMargin && [Reseller Net Sales] >= AccessorySales))
//Distinct Clothing Products
VAR ClothingProducts =
CALCULATE(DISTINCTCOUNT('Product'[Product Alternate Key]),
 FILTER(
 SUMMARIZE(
 CALCULATETABLE('Reseller Sales',
 'Date'[Calendar Year Status] IN {"Current Calendar Year", "Prior Calendar Year"},
 'Product'[Product Category] = "Clothing"),
 'Product'[Product Alternate Key]),
 [Reseller Net Margin %] >= ClothingNetMargin && [Reseller Net Sales] > ClothingSales))
RETURN
AccessoryProducts + ClothingProducts

With the variables named and evaluated, the RETURN keyword
simply adds the results of the two distinct count expressions
contained within the AccessoryProducts and ClothingProducts variables.
The multi-line comment at the top of the expression denoted
by /* and */ makes the DAX measure easier to understand in the
future. Single-line comments have been added using // to
precede the distinct accessory and clothing products. With the
variables declared in this structure, it becomes very easy to

adjust the measure to different input thresholds such as a higher
or lower net sales value or net margin rates.

The most efficient filtering conditions of measures should be
implemented in measures first. Efficient filter conditions are those which
don't require the FILTER() function, such as the calendar year status and
product category filter conditions in the Reseller High Value Accessory and
Clothing Products measure. Once the sufficient filters have been applied,
more complex but less performant filtering conditions can operate on
smaller sets of data, thus limiting their impact on query performance.

A Power BI report can leverage the measure in a Visual level
filter to only display the specific products that meet the criteria
of the measure. In the following table visual, only five products
(2 Accessories, 3 Clothing) are displayed given the filter on the Reseller
High Value Accessory and Clothing Products measure:

Variable-based DAX measure as a Visual level filter

The filter context of the Reseller Sales fact table is respected via the
SUMMARIZE() function. Just like bidirectional cross-filtering via
the CROSSFILTER() function and bidirectional relationships, other
dimensions related to the Reseller Sales fact table can be used for
filtering the measure. For example, a filter on the Sales Territory
Country column for the United States would result in only one
product.

It's necessary to reference the alternate key of the product dimension

given the implementation of slowly changing dimension logic, as
described in Chapter 7, Planning Power BI Projects. A single product can
have multiple rows in its dimension table, reflecting various changes
such as with list prices and product weight. These unique product keys
would be reflected in the fact table, and so using the product key column
would result in counting different versions of the same product multiple
times.

In addition to scalar values like DAX measures, DAX variables
can also store table values such as a specific set of customer key
values or filter set of product rows. DAX measures can then
reference and apply aggregation functions against this set of
tables.

In the following example, two distinct sets of customer keys
(tables) are computed via variables and then combined via the
UNION() function to drive the filter context of the measure:

Internet Sales First Year and Accessory Customers =
VAR FirstYearCustomers =
SUMMARIZE(
 CALCULATETABLE('Internet Sales',
 'Customer'[Customer History Segment] = "First Year Customer"),
 'Customer'[Customer Alternate Key])
VAR AccessoryCustomersThisYear =
SUMMARIZE(
CALCULATETABLE('Internet Sales',
 'Date'[Calendar Year Status] = "Current Calendar Year",'Product'[Product Category] = "Accessories"),
'Customer'[Customer Alternate Key])
VAR TargetCustomerSet =
DISTINCT(UNION(FirstYearCustomers,AccessoryCustomersThisYear))
RETURN
CALCULATE(DISTINCTCOUNT(Customer[Customer Alternate Key]),TargetCustomerSet)

The DISTINCT() function is applied against the result of the UNION()
function since duplicate rows are retained by the UNION() function
in DAX. Just like the previous example with variables, the
SUMMARIZE() function is used to both embed filter conditions and to
respect the filter context of the Internet Sales fact table. In this
example, SUMMARIZE() allows selections on dimension tables related

to the Internet Sales fact table, such as Sales Territory to also impact
the measure.

In the following matrix visual of a Power BI report, the Sales
Territory Country column from the Sales Territory dimension is used
as the column header and the results from the measure reflect
each individual country:

Table-valued DAX variable-based measure

The filter context embedded into both variables (FirstYearCustomers
and AccessoryCustomersThisYear) of the measure provides the
equivalent behavior of bidirectional cross-filtering between
Internet Sales and the Customer dimension. The SUMMARIZE() function is
used rather than CROSSFILTER() when given a performance
advantage. See the Performance testing section later in this
chapter for additional details on performance testing.

The combination of table-valued DAX variables and set-based DAX
functions such as UNION(), INTERSECT(), and EXCEPT() support a wide variety of
analytical operations. Authors of DAX measures should familiarize
themselves with the essentials of DAX as a query language, particularly
the SUMMARIZE() and SUMMARIZECOLUMNS() functions. Custom tables resulting from
DAX queries are often needed by DAX measure expressions and can also
be used in other applications such as SSRS.

Base measures
Before any custom or complex DAX measures can be developed,
a set of relatively simple base measures must be implemented
first. These measures represent the metrics from the Define the
facts section of Chapter 7, Planning Power BI Projects, and thus
contain validated and approved business definitions. For
Adventure Works, a set of 12 base measures related to sales, cost,
and margins are applicable to both the Internet Sales and Reseller
Sales fact tables, such as the following:

Reseller Gross Sales = SUMX('Reseller Sales',
 'Reseller Sales'[Unit Price]*'Reseller Sales'[Order Quantity])
Reseller Net Sales = [Reseller Gross Sales] - [Reseller Sales Discounts]
Reseller Sales Product Cost = SUMX('Reseller Sales',
'Reseller Sales'[Order Quantity]*'Reseller Sales'[Product Standard Cost])
Reseller Cost of Sales = [Reseller Sales Product Cost] + [Reseller Sales Freight Cost]
Reseller Gross Product Margin = [Reseller Gross Sales] - [Reseller Sales Product Cost]
Reseller Gross Product Margin % = DIVIDE([Reseller Gross Product Margin],[Reseller Gross Sales])
Reseller Net Product Margin = [Reseller Net Sales] - [Reseller Sales Product Cost]
Reseller Net Product Margin % = DIVIDE([Reseller Net Product Margin],[Reseller Net Sales])
Reseller Gross Margin = [Reseller Gross Sales] - [Reseller Cost of Sales]
Reseller Gross Margin % = DIVIDE([Reseller Gross Margin],[Reseller Gross Sales])
Reseller Net Margin = [Reseller Net Sales] - [Reseller Cost of Sales]
Reseller Net Margin % = DIVIDE([Reseller Net Margin],[Reseller Net Sales])

As shown in the Fact table columns section from Chapter 9,
Designing Import and DirectQuery Data Models, three fact
table columns (Extended Amount, Sales Amount, and Total Product Cost) were
excluded from the Power BI fact table to save resources. The
SUMX() function is used to compute the equivalent values from
these three columns to support the Gross Sales, Net Sales, and Product
Cost measures, respectively.

Sales discounts and freight costs, both simple sums of their respective
fact table columns, are the two measures that create differences among
the base measures. Discounts separate gross sales from net sales and
freight costs separate the cost of sales from product costs only. The
distinct definitions of the base measures support common analysis needs,
such as the profitability (margin) of sales inclusive or exclusive of freight
costs.

With base measures created for both Reseller Sales and Internet Sales
fact tables, an additional set of base measures can be created for
Adventure Works as an organization. Several of these measures
can simply sum the Reseller Sales and Internet Sales measures as
shown in the following examples:

AdWorks Net Sales = [Internet Net Sales] + [Reseller Net Sales]
AdWorks Cost of Sales = [Internet Cost of Sales] + [Reseller Cost of Sales]
AdWorks Net Margin = [AdWorks Net Sales] - [AdWorks Cost of Sales]
AdWorks Net Margin % = DIVIDE([AdWorks Net Margin],[AdWorks Net Sales])

Additional DAX measures with specific filtering or evaluation
logic such as date intelligence metrics can reference the base
measures in their expressions. Via this measure branching, any
subsequent changes to the definition of the base measures will
be automatically reflected in other dependent measures.
Additionally, the readability of the custom measures is
improved, as these expressions only contain their specific logic.

Measure support expressions
Large and complex Power BI datasets with many measures may
have one or multiple measure support tables. As shown in the
previous chapters, these hidden tables don't contain data and
aren't refreshed with the dataset, but serve as the home table for
commonly used DAX expressions. Unlike DAX variables, hidden
DAX measure expressions are globally available to other DAX
measures and queries. Measure support expressions, therefore,
serve as a staging and consolidation layer to simplify DAX
measures.

The measure support table may contain any of the following
types of expressions:

KPI targets

Current and prior periods

Filter context information

The two measures described in the Measure support logic
section of Chapter 9, Designing Import and DirectQuery Data
Models, represent the filter context information type of measure
support. These measures typically use the
ISFILTERED() or ISCROSSFILTERED() functions and are referenced within
conditional expressions of other measures. Additionally, the
USERPRINCIPALNAME() function is a good candidate for the Measure
Support table if dynamic RLS is needed, or if other, user-based
functionality is built into the dataset.

The ISFILTERED() function is limited to a specific column and only returns a
true value when the given column is directly filtered. The ISCROSFFILTERED()
function can reference a column or a table and returns true when one of
the following three conditions are met:

The column referenced is directly filtered

A column on the same table as the column referenced is filtered

A column on a table which has a cross-filtering relationship to
the table or column referenced is filtered

KPI Targets
The standard Key Performance Indicator (KPI) visual in
Power BI Desktop compares an indicator measure relative to a
Target measure. The variance between the indicator and the target
is displayed in the visual and is used to drive the color formatting
(for example, red = bad; green = good). For many measures, a
corresponding target measure may need to be created that
applies some calculation logic to an existing measure. The
following measure is simply 10% greater than the previous year's
year-to-date net sales:

Target: 10% Above PY YTD Internet Sales = [Internet Net Sales (PY YTD)] * 1.10

In a standard KPI visual, the target measure is displayed as the
goal and used to calculate the variance percentage between the
indicator and the target. In the following example, a $9.2M
indicator value Internet Net Sales (YTD) is 5.8% below the 10%
growth target measure of $9.8M:

Standard KPI Visual

Several other common visuals in Power BI benefit from target
measures, including the bullet chart and the gauge visual.
Several of these visuals can use multiple target measures to
define alternative thresholds, such as the min and max values
displayed.

In certain scenarios, a dedicated table of corporate target measures can
be added to a dataset. For example, a table may contain columns for
expected or target customer counts, products sold, and other metrics at a
given date's granularity. Target measures can be created to access the
values of this table via utility functions, such as LOOKUPVALUE().

The LOOKUPVALUE() function is particularly useful because it ignores the

current filter context. As shown in the examples in the following section,
the LOOKUPVALUE() function can be relied on to provide the same input value

to other measures, such as a date or a number referring to specific date
rows, regardless of any filters applied in the report.

Current and prior periods
A common requirement of date intelligence metrics is to
compare the YTD total for a measure versus the equivalent time
period of the prior year. For example, on November 14, 2017, the
visual would compare January through October of 2017 versus
January through October of 2016. Without any external filtering,
however, a standard YTD measure would include the 14 days of
November in 2017 and would capture the entire year of 2016 if
the year 2016 was in the filter context. To deliver equivalent or
apples to apples comparisons of equal time periods, the filter
context of measures can be further customized.

The following measures retrieve the year-to-date net sales
through the prior calendar month and prior calendar week. For
example, throughout the month of November, the YTD Last Month
measure would, at most, only retrieve the net sales through the
month of October. Likewise, the YTD Last Week measure would, at
most, only include the net sales through the end of the prior
week of the year (45):

Prior Calendar Month Number =
VAR CurrentDay = TODAY()
RETURN
IF (
LOOKUPVALUE('Date'[Calendar Month Number],'Date'[Date],CurrentDay) = 1,12,
LOOKUPVALUE('Date'[Calendar Month Number],'Date'[Date],CurrentDay)-1
)
Prior Calendar Week Number =
VAR CurrentDay = TODAY()
RETURN
IF(
LOOKUPVALUE('Date'[Calendar Week Number in Year],'Date'[Date],CurrentDay) = 1, CALCULATE(MAX('Date'[Calendar Week Number in Year]),FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year]) - 1)),
LOOKUPVALUE('Date'[Calendar Week Number in Year],'Date'[Date],CurrentDay)-1)

Internet Net Sales (YTD Last Month) =
IF([Prior Calendar Month Number] <> 12,
CALCULATE([Internet Net Sales], FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year]) &&
 'Date'[Date] <= MAX('Date'[Date]) && 'Date'[Calendar Month Number] <= [Prior Calendar Month Number])),
CALCULATE([Internet Net Sales], FILTER(ALL('Date'), 'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1 && 'Date'[Date] <= MAX('Date'[Date]) && 'Date'[Calendar Month Number] <= [Prior Calendar Month Number])))

Internet Net Sales (YTD Last Week) =
VAR CurrentWeek = LOOKUPVALUE('Date'[Calendar Week Number in Year],'Date'[Date],TODAY())
RETURN
IF(CurrentWeek <> 1,
CALCULATE([Internet Net Sales], FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year]) &&
 'Date'[Date] <= MAX('Date'[Date]) && 'Date'[Calendar Week Number in Year] <= [Prior Calendar Week Number])),
CALCULATE([Internet Net Sales], FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1 && 'Date'[Date] <= MAX('Date'[Date]) && 'Date'[Calendar Week Number in Year] <= [Prior Calendar Week Number])))

For any prior calendar year in the filter context, the (YTD Last Month)
measure would only include January through October for this
given year. Likewise, the (YTD Last Week) measure would only
include weeks 1 through 45 of the given year. By embedding this
dynamic filtering logic, it's possible to use these measures in
report visuals without applying any additional filters.

The TODAY() function combined with the LOOKUPVALUE() function makes it
possible to retrieve values at query time relative to the current date. In
the previous example, the month and week number columns of the
current year (for example, October = 10) are queried via LOOKUPVALUE()
based on the current date. With these values retrieved, subtracting one
from the results provides the value associated with the prior month and
prior week, respectively. These measures are then referenced in the
FILTER() function of their respective year-to-date measures.

Similar to this simple example, dynamically computed dates and
other values make it possible to create measures for the current
date and yesterday:

Internet Net Sales (Today) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Date] = TODAY()))

Internet Net Sales (Yesterday) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Date] = TODAY()-1))

Along with the date intelligence metrics described in the
following section, a rich set of date-based metrics give users of
Power BI reports and dashboards visibility for both short and
long-term results.

Date intelligence metrics
Date intelligence metrics are typically the first set of measures to
be added to a dataset following base measures. These measures
reference the base measures and add a custom filtering condition
to the Date dimension table, thus providing visibility to multiple
distinct time intervals, such as year-to-date and the previous
year-to-date. Given their built-in date filtering logic, Power BI
reports and dashboards can be developed faster and without
manual maintenance costs of updating date filter conditions.

The following four measures apply custom filter contexts to
either return the current year, month, and week by default, or
the latest of these time intervals given the date filters applied in a
report:

Internet Net Sales (CY) = CALCULATE([Internet Net Sales],FILTER(ALL('Date'),
 'Date'[Calendar Year] = MAX('Date'[Calendar Year]) &&
 'Date'[Date] >= MIN('Date'[Date]) && 'Date'[Date] <= MAX('Date'[Date])))

Internet Net Sales (YTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year]) &&
 'Date'[Date] <= MAX('Date'[Date])))

Internet Net Sales (MTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year Month Number] = MAX('Date'[Calendar Year Month Number]) &&
 'Date'[Date] <= MAX('Date'[Date])))

Internet Net Sales (WTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year Week Number] = MAX('Date'[Calendar Year Week Number]) &&
 'Date'[Date] <= MAX('Date'[Date])))

The use of the MIN() and MAX() functions within the FILTER() function
invokes the filter context of the report query. For example, if a

report page is filtered to the second quarter of 2016 (2016-Q2),
the CY measure will only return the sales from these three months
while the YTD measure will include both the first and second
quarter of 2016. The month-to-date (MTD) and week-to-
date (WTD) measures will return the sales for June of 2016 and
Week 27 of 2016, the last month and week in the filter context.

The date dimension table only contains rows through the current
date. Therefore, in the absence of any other date filters applied in
a report, these measures default to the current YTD, MTD, and
WTD totals for net sales per the following multi-row card visual:

Date intelligence metrics for the current year

The (CY) measure returns the same value as the YTD measure
when no other date filters are applied.

The MTD and WTD measure both references a numeric column on the
date table that corresponds to the given granularity. For example,
December of 2016 and January of 2017 are represented by the values 96
and 97 in the Calendar Year Month Number column. As shown in the previous
chapter, these sequential columns are critical for date intelligence and
are also used by the Sort By column property.

The following set of DAX measures return the prior year, month,
and week given the filter context of the report:

Internet Net Sales (PY) = CALCULATE([Internet Net Sales],FILTER(ALL('Date'),
 CONTAINS(VALUES('Date'[Prior Calendar Year Date]),'Date'[Prior Calendar Year Date],'Date'[Date])))

Internet Net Sales (PYTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1 &&
 'Date'[Date] <= MAX('Date'[Prior Calendar Year Date])))

Internet Net Sales (PMTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year Month Number] = MAX('Date'[Calendar Year Month Number])-1 &&

 'Date'[Date] <= MAX('Date'[Prior Calendar Month Date])))

Internet Net Sales (PWTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year Week Number] = MAX('Date'[Calendar Year Week Number])-1 &&
 'Date'[Date] <= MAX('Date'[Prior Calendar Week Date])))

The Calendar Year, Calendar Year Month Number, and Calendar Year Week Number
columns used by the current period measures are also referenced
by the prior period measures. However, the prior period
measures subtract a value of one from the result of the MAX()
function to navigate to the given preceding period.

In the PY measure, the CONTAINS() function used within the filtering
parameter of the FILTER() function returns a true or false value for
each prior calendar year date based on the date column. The date
column reflects the filter context of the report query and thus
only the corresponding prior year dates are passed to FILTER() as
the modified filter context.

DAX provides a number of functions dedicated to date intelligence, such
as DATEADD() and SAMEPERIODLASTYEAR(). These functions are much less verbose
than the techniques from these examples, but they're also generally
limited to standard calendars. The approach described in this section
leveraging core DAX functions, such as FILTER() and ALL(), can also be
applied to financial calendars. Additionally, the filter navigation (for
example, MAX() - 1) implemented in the prior period measures is applicable
to more advanced date intelligence expressions.

Each prior period measure references a column containing date
values that have been adjusted relative to the date column. The
following screenshot of the date dimension table in SQL Server
highlights these three columns relative to the date column:

Prior date columns in the date dimension

Given the value of date intelligence measures and the relative
static nature of the date dimension, it's recommended to develop
a robust date dimension table. If the necessary columns cannot
be implemented in the source database itself, the columns can be
computed within the SQL view or the M query of the Date table.

Current versus prior and growth
rates
With date intelligence measures developed for the current and
prior periods, growth or variance measures can be added to the
dataset, comparing the two values. In the following example, a
year-over-year (YOY) and a year-over-year year-to-date (YOY
YTD) measure have been created based on the current year and
prior year measures from the preceding section:

Internet Net Sales (YOY) = [Internet Net Sales (CY)] - [Internet Net Sales (PY)]
Internet Net Sales (YOY YTD) = [Internet Net Sales (YTD)] - [Internet Net Sales (PY YTD)]

Finally, growth percentage measures can be added, which
express the variance between the current and prior period
measures as a percentage of the prior period. The following
measures reference the above YOY measures as the numerator
within a DIVIDE() function:

Internet Net Sales (YOY %) = DIVIDE([Internet Net Sales (YOY)],[Internet Net Sales (PY)])
Internet Net Sales (YOY YTD %) = DIVIDE([Internet Net Sales (YOY YTD)],[Internet Net Sales (PY YTD)])

The DIVIDE() function returns a blank value if the denominator is zero or a
blank value by default. The divide operator (/), however, will return an
infinity value when dividing by zero or a blank. Given the superior
error-handling behavior and performance advantages of DIVIDE(), the
DIVIDE() function is recommended for computing division in DAX.

Rolling periods
Rolling period and trailing average measures are also very
common in datasets, as they help to smooth out individual
outliers and analyze longer-term trends. For example, a
significant business event or variance 10 months ago will have a
relatively small impact on a trailing 12 month total. Additionally,
this variance will not impact trailing 30 day or 3, 6, and 9-month
rolling period measures.

The following two measures capture the trailing 60 days of sales
history and the 60 days of history prior to the trailing 60 days:

Internet Net Sales (Trailing 60 Days) =
VAR MaxDate = MAX('Date'[Date])
VAR StartDate = MaxDate - 59
RETURN
CALCULATE([Internet Net Sales],FILTER(ALL('Date'),'Date'[Date] >= StartDate && 'Date'[Date] <= MaxDate))

Internet Net Sales Trailing (60 to 120 Days) =
VAR MaxDate = MAX('Date'[Date])
VAR EndDate = MaxDate - 60
VAR StartDate = EndDate - 59
RETURN
CALCULATE([Internet Net Sales],FILTER(ALL('Date'), 'Date'[Date] >= StartDate && 'Date'[Date] <= EndDate))

The two 60-day measures compute the dates for the filter
condition within DAX variables and then pass these values into
the FILTER() function. The two measures help to answer the
question "Is Internet sales growth accelerating?". The following
table visual in Power BI Desktop displays the measures by date
and as a subtotal value:

Trailing 60 and 60 to 120-day measures

With this logic, the value for the trailing 60 days measure on
November 15th, 2017 includes Internet sales since September
17th, 2017. The 60 to 120 days measure, however, includes sales
history from July 19th, 2017 through September 16th, 2017. The
subtotal value reflects the latest date in the filter context—
November 15th, 2017, in this example.

Rolling period or trailing average measures generally require the
sequential numeric date dimension columns in the date suggested in both
previous chapters. Very similar to the prior period measures from the
previous section (for example, PY YTD), rolling period measures can
reference sequential columns for the given granularity and modify the
date filter by adding or subtracting values.

Dimension metrics
The majority of DAX measures will apply aggregating functions
to numeric columns of fact tables. However, several of the most
important metrics of a dataset are those which identify the
presence of dimensions in fact tables such as the count of
customers who've purchased and those who haven't. It can also
be necessary to count the distinct values of a dimension column
such as the number of postal codes sold to or the number of
distinct marketing promotions over a period of time.

In the dataset for this project, the customer dimension table is
exclusive to the Internet Sales fact table, and the measure should
only count customers with internet sales history. Additionally,
slowly changing dimension logic has been implemented so that a
single customer defined by the Customer Alternate Key column could
have multiple rows defined by the Customer Key column.

The following two DAX measures count the number of unique
customers and products with internet sales history:

Internet Sales Customer Count =
CALCULATE(DISTINCTCOUNT(Customer[Customer Alternate Key]), 'Internet Sales')

Internet Sales Products Sold Count =
CALCULATE(DISTINCTCOUNT('Product'[Product Alternate Key]),'Internet Sales')

By invoking the Internet Sales fact table as a filtering parameter to
CALCULATE(), any filter applied to a related dimension table such as
Sales Territory will also impact the measure. This behavior is the
same as bidirectional cross-filtering between the Internet Sales and

Customer table. However, in the event that no filters have been
applied in the reporting tool (for example, Power BI or Excel),
the Internet Sales table filter ensures that only customers with
Internet Sales histories are counted.

Missing dimensions
Missing dimension measures are commonly used in churn and
exception reporting and analyses. For example, a report may be
needed which displays the specific products that haven't sold or
the past customers who haven't made a purchase in a given filter
context. Additionally, missing dimension measures give greater
meaning to other dimension measures. For instance, the count of
products sold in a period may not be as useful without knowing
how many products were not sold over this same period.

The following DAX measure counts the number of unique
customers without Internet Sales history:

Internet Sales Customers Missing =
CALCULATE(DISTINCTCOUNT('Customer'[Customer Alternate Key]),
 FILTER(VALUES('Customer'[Customer Alternate Key]),
 ISEMPTY(RELATEDTABLE('Internet Sales'))))

Internet Sales Products Missing =
CALCULATE(DISTINCTCOUNT('Product'[Product Alternate Key]),
 FILTER(VALUES('Product'[Product Alternate Key]),
 ISEMPTY(RELATEDTABLE('Internet Sales'))))

The Internet Sales Customers Missing measure references the 'Internet
Sales' fact table like the customer count measure does, but only
within the ISEMPTY() function. The ISEMPTY() function operates as the
filter parameter of the FILTER() function and returns a true or a false
value for each distinct Customer Alternate Key provided by the VALUES()
function. Only the customer rows without any related rows in the
Internet Sales fact table are marked as true and this filtered set of
customer rows is passed to the DISTINCTCOUNT() function. The same

methodology is applied to the Internet Sales Products Missing measure.

The following matrix visual of a Power BI report has been
filtered to four calendar quarters and broken out by the Sales
Territory Group:

Internet Sales Customers and Customers Missing

Any other dimension table with a relationship to the Internet Sales
fact table, such as Promotion and Product could also be used to filter
the metrics.

In this dataset, the customer dimension has 18,484 unique customers as
defined by the Customer Alternate Key. Therefore, the sum of the customer
count and customers missing measures is always equal to 18,484. As
explained in the Filter context section, the subtotal values execute in their
own filter context. For example, only 9,024 did not make an online
purchase in any of the four quarters, while over 15,000 customers did
not make a purchase in each of the four quarters.

Once core dimension metrics have been established such as in
the previous examples, additional metrics can be developed

which leverage their logic. The following measures identify the
count of first-year internet sales customers and the count of
accessories products which have not sold online, respectively:

Internet Sales First Year Customer Count =
CALCULATE([Internet Sales Customer Count],'Customer'[Customer History Segment] = "First Year Customer")

Internet Sales Products Missing (Accessories) =
CALCULATE([Internet Sales Products Missing],'Product'[Product Category] = "Accessories")

Dimension metrics, just like the base measures described earlier,
may be used in reporting by themselves or may be referenced by
other measures. This branching of measures underlines the
importance of clearly defining, documenting, and testing the
foundational measures of a dataset.

Ranking metrics
Many reports and analyses are built around the ranking of
dimensions relative to measures, such as the top 10 salespeople
based on YTD sales. Ranking measures can also help deliver
more clean and intuitive report visualizations as they substitute
small integer values for large numbers and decimal places.
Ranking measures can be as simple as specifying a column and a
measure, or more complex with unique ranking logic applied in
distinct filter contexts.

Ranking measures in DAX are implemented via the RANKX()
function, which is an iterator like SUMX() and FILTER(). As an
iterating function, two required input parameters include a table
and the expression to be evaluated for each row of the table. The
following two measures rank products based on the Internet Net
Sales measure:

Internet Net Sales Product Rank =
RANKX(ALL('Product'[Product Alternate Key]),[Internet Net Sales],,DESC,Skip)

Internet Net Sales Product Rank (All Products) =
VAR ProdRankTable =
ALL('Product'[Product Alternate Key],'Product'[Product Name],'Product'[Product Category

Group],'Product'[Product Category],'Product'[Product Subcategory],'Product'[Product Name])
RETURN
RANKX(ProdRankTable, [Internet Net Sales],,DESC,Skip)

As with date intelligence and other measures, ALL() is used to remove the
filters applied to a table. The ALL() function both removes a filter and
returns a table which can then be evaluated by other functions. ALL() can

remove filters from an entire table, multiple columns of the same table,
or a single column from a table. Additionally, the ALLEXCEPT() function can
be used remove filters from the current and any future columns of a
table, except for one or a specific set of columns.

In the Internet Net Sales Product Rank measure, the ALL() function
returns a table of the unique product's alternate key values. Since
only a single column is referenced by ALL() in this measure, other
columns from the Product dimension table are allowed into the
filter context. For example, in the following table, the Product
Category column impacts the Internet Net Sales Product Rank measure so
that the HL-U509-R product is ranked first given that it's the highest
selling product in the Accessories category:

Ranking measures

The Internet Net Sales Product Rank (All Products) measure, however,
ranks the product relative to all other products including
products in the Bikes category. The group of columns specified in
the ALL() function (the table parameter to RANKX()), defines the set
of rows that the ranking expression will be evaluated against.

For ranking and certain other scenarios, it's necessary to apply
alternative logic for subtotals. For example, the total row of the previous
table visual would show a ranking value of 1 without any modification to
the DAX. A common pattern to address subtotal values is to check
whether an individual item of a column is in the filter context via
HASONEVALUE(). The following revised measure uses an IF() conditional
function to apply the ranking for individual products, but otherwise
returns a blank value:

Internet Net Sales Product Rank = IF(HASONEVALUE('Product'[Product Alternate Key]),

RANKX(ALL('Product'[Product Alternate Key]),[Internet Net Sales],,DESC,Skip),BLANK())

As shown in this example, it's essential to understand the
intended ranking logic and it may be necessary to store
alternative ranking measures to suit the requirements of
different reports and projects.

The RANKX() function has five parameters, but only the first two—the table
and the expression to evaluate—are required. In this example, the third
parameter is skipped via the comma and the measure is set to rank in
descending order of the expression. Additionally, the final parameter
(Skip or Dense) determines how tie values are treated. For example, if two
products are tied for the highest sales, both products will be ranked 1,
and the next-highest product will be ranked 3. Descending order and the
skip tie behavior are both defaults, but it's a good practice to explicitly
define these settings in the measures.

Dynamic ranking measures
The ranking measures in the previous section are specific to
individual products. These measures cannot be used, for
example, to rank product subcategories or product categories.
Rather than develop many separate measures targeted at one
specific column, logic can be embedded in DAX measures to
dynamically adjust to the columns in the filter context.

In the following measure, a ranking is applied based on the filter
context from three levels of a product hierarchy:

Internet Net Sales Product Rank (Conditional) =
VAR ProductFilter = ISFILTERED('Product'[Product Name])
VAR SubCatFilter = ISFILTERED('Product'[Product Subcategory])
VAR CatFilter = ISFILTERED('Product'[Product Category])
RETURN
Switch(TRUE(),
 ProductFilter = TRUE(), RANKX(ALL('Product'[Product Name]),[Internet Net Sales],,DESC,Skip),
 SubCatFilter = TRUE(), RANKX(ALL('Product'[Product Subcategory]),[Internet Net Sales],,DESC,Skip),
 CatFilter = TRUE(), RANKX(ALL('Product'[Product Category]),[Internet Net Sales],,DESC,Skip),
 BLANK())

The measure checks for the existence of a filter on the Product Name,
Product Subcategory, and Product Category columns within a
SWITCH() function via the ISFILTERED() function. The first logical
condition to evaluate as true will result in the corresponding
RANKX() expression being executed. If no condition is found to be
true, then the BLANK() value is returned.

The dynamic ranking measure can be used in report visuals
which drill up/down through the product hierarchy or in

separate visuals dedicated to specific columns. In the following
screenshot, distinct table visuals representing the three levels of
the product hierarchy utilize the Internet Net Sales Product Rank
(Conditional) measure:

Dynamic ranking measure

For the visuals in the preceding table, a shorter and more
intuitive name was used instead of the full measure name
(Internet Net Sales Product Rank (Conditional)). To change the name of a
measure or column used in a report visual, double-click the
name of the measure or column in the Values bucket of the
Visualizations pane. The revised name only applies to the
specific visual, and hovering over the revised name identifies the
source measure or column.

Similar to the Internet Net Sales Product Rank measure from the
previous section, the conditional measure allows for other
columns to impact the filter context. For example, if both the
Product Category and Product Subcategory columns are included in the
same table visual, the conditional measure will rank the
subcategories relative to other subcategories of the same Product
Category. With this dataset, the Tires and Tubes subcategory,
which is ranked fourth overall per the above table, would be
ranked number one for the Accessories product category.

Security roles
Per Chapter 7, Planning Power BI Projects, the required data
security for this project is to limit the visibility of the Adventure
Works sales team users to their respective sales territory groups.
There are three sales territory groups (North America Sales Group, Europe
Sales Group, and Pacific Sales Group), and, as described in the previous
chapter, cross-filtering relationships exist between the Sales
Territory dimension table, and all three fact tables (Internet Sales,
Reseller Sales, and Sales and Margin Plan). Therefore, security roles
with a filter condition on the given sales territory group will also
filter the fact tables, and business users mapped to these roles
will only see data associated for their Sales Territory group.

Security roles are defined in Power BI Desktop via the Manage
roles dialog of the Modeling tab as shown in the following
screenshot:

Managing security roles
In this example model, the Sales Territory dimension table has a single
direction one-to-many relationship with the Internet Sales and Reseller Sales
fact tables. For the Sales and Margin Plan fact table, the Sales Territory filter first
flows to the bridge table and then uses a bidirectional cross-filtering
relationship from the Sales Territory bridge to Sales and Margin Plan. Therefore,
a user mapped to the Europe Sales Group role will only have access to the
Internet Sales, Reseller Sales, and Sales Plan data associated with
Europe.

Just like a filter selection on a column of the Sales Territory table in

a report, a security filter also flows across the cross-filtering
relationships of the data model. However, unlike report filters,
security filters cannot be overridden by DAX measures. Security
filters are applied to all report queries for the given dataset and
any additional filtering logic or DAX expression respects the
security role definition.

Given the automatic filtering of security role conditions, it's important to
implement efficient security filters and to test the performance of
security roles. For example, a complex filter condition applied against a
large dimension table could significantly degrade the performance of
reports and dashboards for users or groups mapped to this security role.

In addition to defining security roles, security roles can also be
tested in Power BI Desktop via the View as roles command on
the Modeling tab. In the following screenshot, a chart that
displays sales by the sales territory country is only displaying the
countries associated with the European Sales Territory group
due to the View as roles selection:

View as roles in Power BI Desktop
Similar to the View as roles feature in Power BI Desktop, a Test as role
option is available in the Power BI service. This feature can be accessed
from the ellipsis next to each RLS role in the Security dialog for the
dataset. Additionally, other users can test the security roles by
connecting to published Power BI apps. In this testing scenario, the user
would not be a member of the app workspace, but a member of an Azure
Active Directory Security group which is mapped to a security of the
dataset.

Individual users and groups of users are mapped to security
roles in the Power BI service. For this project, and as a strongly
recommended general practice, Azure Active Directory
(AAD) security groups should be created for the users accessing
Power BI content. The following screenshot from AAD displays
the properties of a North America Sales security group:

The Azure Active Directory security group
Users can be added or removed from AAD security groups in the Azure
portal or via PowerShell scripts. In the previous screenshot, the Assigned
membership type is used but alternatively, a Dynamic User membership
type can be created based on a membership rule query. With Dynamic
User AAD security groups, a user can be automatically added or
removed from groups as their role in the organization changes.

The AAD security groups can then be mapped to their respective
security roles for the published dataset in Power BI. In the
following screenshot, the North America Sales AAD security

group is recognized as a potential group to be added as a
member of the North America Row-Level Security (RLS) role:

Member assignment to Row-Level Security roles

With the Azure AD security groups created and mapped to their
corresponding RLS roles of the Power BI dataset, security filters
will be applied based on the user's membership of the Azure AD
group. When RLS roles have been applied to a dataset, the users
accessing the reports and dashboards based on that dataset will
need to be mapped to at least one of the roles. For example, if a
Power BI app is distributed to a user who is not included in one
of the Azure AD security groups mapped to one of the RLS roles,
and this user account is not mapped individually to one of these
RLS roles, the user will receive the following error message in
the Power BI service:

Error message: User Not mapped to an RLS role

In the event that a user is mapped to multiple RLS roles, such as
both the North America Sales Group and the Europe Sales Group, that user
will see data for both Sales Territory groups (and not Pacific Sales
Group). For users that require access to the entire dataset, such as
administrators or executives, an RLS role can be created on the
dataset that doesn't include any filters on any of the tables. Chapter
17, Creating Power BI Apps and Content Distribution, and Chapter
18, Administering Power BI for an Organization, contain
additional details on Azure AD's relationship to Power BI and
the role of security groups in securely distributing Power BI
content to users.

Dynamic row-level security
Dynamic row-level security (DRLS) models identify the
user connected to the dataset via the USERPRINCIPALNAME() function
and apply filters based on this identity. These models can use
DAX functions or tables and relationships to implement a filter
context specific to the given user. For example, a user and a
permissions table could be added to the dataset (and hidden) so
that the user table would first filter the permissions table, and
the permission table would then filter the dimension to be
secured, such as a Sales Territory Country.

In the following example of a permissions table, Jen Lawrence is
associated with Germany, Australia, and the United States, and thus
should only have visibility to these countries in any Power BI
report or dashboard built on top of the dataset:

User permissions table
The other two tables in the Security Tables query group include a distinct
list of User Principal Names (UPNs) and a distinct list of Sales Territory
Country. The Sales Country table is necessary because the Sales Territory
dimension table is more granular than the country one. The Sales Country
table receives the filter context from the permissions table and uses a
simple one-to-many cross-filtering relationship with the Sales Territory
dimension table to filter the fact tables.

The dynamic RLS role will be defined with the User Principal Name
column of the Users table equal to the USERPRINCIPALNAME() function.

The relationships, and, more specifically, the cross-filtering from
the Permissions table, will deliver the intended filter context for the
given user. In the following screenshot from the Relationship
view, a bidirectional cross-filtering relationship is defined
between Sales Country Permissions and Sales Countries so that only the
countries associated with the user will filter the Sales Territory
dimension table:

Dynamic RLS model relationships

The Apply security filter in both directions property of the bi-
directional relationship between Sales Country Permissions and Sales
Countries is enabled by default. This property and the
relationships-based filtering design is applicable to both import
and DirectQuery datasets. The gray shading indicates that all
three security tables should be hidden from the Report View.

With users or groups assigned to the dynamic security role in the
Power BI Service, the role can be tested via the Test as role
feature in Power BI. In the following screenshot, the user Brett is
able to test the dynamic role as himself (Canada, United States), but
can also view the dynamic role as though Jennifer is logged in,
viewing the reports:

Testing dynamic row-level security in Power BI

In this security testing sample, the chart only displays the sales
territory countries associated with Jennifer, and the three tables to
the right reflect the three security tables added to the dataset. As
expected, all three security tables are filtered based on Jennifer's
UPN, and this filter flows through the rest of the data model via
relationships among the Sales Territory dimension and all three
fact tables.

It can be useful to create a dedicated security testing report that can be
leveraged as security roles are created and modified. The report may
contain multiple pages of visualizations representing all primary tables
and any sensitive metrics or columns from across the dataset. On this
project, a business analyst or a QA Tester, such as Stacy Loeb, can be
mapped on to the security role and use the report to confirm that the
filter context from the security role has been implemented successfully.

Performance testing
There are often many available methods of implementing
business logic and custom filter contexts into DAX measures.
Although these alternatives deliver the essential functional
requirements, they can have very different performance
characteristics, which can ultimately impact user experience and
the scalability of a dataset. When migrating a self-service dataset
to a corporate solution or preparing a large and highly utilized
dataset, it's always a good practice to test common queries and
the DAX measures used by those queries.

For example, the same common dimension grouping (for
example, Product Category and Year) and the same filter context (Year =
2018) could produce dramatically different performance results
based on the measures used in the query, such as Net Sales versus
Count of Customers. The alternative performance statistics associated
with different measures such as duration and the count of
storage engine queries generated could then be used to focus
performance tuning efforts.

In some cases, the DAX measures associated with slow queries
cannot be significantly improved, but the data obtained from the
performance testing results can drive other changes. For
example, report authors could be advised to only use certain
measures in less performance intensive visuals such as Cards, or
in reports that have been substantially filtered. In a DirectQuery
model, the data source owner of the dataset may be able to
implement changes to the specific columns accessed via the
slow-performing measures.

DAX Studio
DAX Studio is a lightweight (5 MB), open source client tool for
executing DAX queries against Power BI datasets and other
sources which share the Microsoft Analysis Services Tabular
database engine, such as SSAS in Tabular mode and Azure
Analysis Services. DAX Studio exposes the metadata of the
source model (for example, tables, measures, hierarchies),
includes reference panes for DAX functions and Tabular
Dynamic Management Views (DMVs), and also provides
query formatting, syntax highlighting, and IntelliSense for
developing DAX queries. Additionally, DAX Studio supports
performance tuning as it can execute traces against its data
sources and displays useful performance statistics, as well as the
query plans used to execute the query.

The Server timings and Query plan panes in DAX Studio expose the
storage engine and formula engine query plans, respectively. In most
performance-testing scenarios, the storage engine versus formula engine
results of a trace (for example, 50 ms in the storage engine, 10 ms in the
formula engine) will lead the user to focus on either the slowest storage
engine queries or the most expensive operations in the formula engine.

For these reasons, despite improvements to DAX authoring in
SQL Server Management Studio (SSMS), DAX Studio is
very commonly used by Microsoft BI developers in Analysis
Services and Power BI environments. Specifically, BI developers
will store the DAX queries created within DAX Studio as .dax or
.msdax files and later open these files from DAX studio for
performance testing or troubleshooting scenarios. For example,
a team may have a DAX query that returns the count of rows for
three fact tables of a data model by calendar date, and use this
query to troubleshoot issues related to a data-loading
process. Additionally, just as M queries saved within .pq files can

be added to version control systems, DAX query files can be
added to version control systems, such as Visual Studio Team
Services.

DAX Studio can be downloaded from http://daxstudio.org.

http://daxstudio.org

Tracing a Power BI dataset via
DAX Studio
The following steps can be used to trace and analyze a Power BI
dataset via DAX Studio:

1. Within the Power BI Desktop file containing the dataset
(import or DirectQuery), create report pages and visuals
which represent the most common reporting and analysis
use cases:

1. To simplify this effort, access two or three existing
Power BI reports which are highly utilized by
business users and create the same visuals in the
dataset file.

2. The formatting of these visuals is not important,
but it's essential that the visuals include the most
common DAX measures, filters, and granularity.

2. Open the Power BI Desktop file containing the dataset
and the sample report visuals from step 1:

1. Power BI Desktop files which do not include a
dataset, such as a file with a Live connection to
Analysis Services or a Live connection to a

published Power BI dataset, will not be visible to
DAX Studio.

3. Open DAX Studio and click the Connect icon on the
right-hand side of the Home ribbon:

Specify the Power BI dataset from the Connect
dialog as shown in the following screenshot:

Connecting to the Power BI dataset via DAX Studio

4. As shown in the preceding image, DAX Studio can
connect to Tabular Server, and even PowerPivot Model, if
DAX Studio is launched from an Excel Workbook
containing a PowerPivot model.

5. Click Connect and observe the tables of the Power BI

dataset displayed in the metadata pane on the left.
6. Click the All Queries icon within the group of Traces

icons on the Home tab:

1. The Output window at the bottom will explain
that the query trace has started.

2. Select the All Queries tab at the bottom (to the
right of Query History).

7. In the Power BI Desktop file, apply a filter to a slicer or
select one of the values within the visuals to cross-
highlight the other visuals:

1. The intent of these actions is to mimic normal
user behavior when accessing the Power BI report
visuals.

2. These actions will generate DAX queries which
will be displayed in the All Queries pane of DAX
Studio, as shown in the following screenshot:

Tracing results in DAX Studio – All Queries pane

8. The All Queries pane can be sorted by the Duration column
to quickly identify the slowest query, as illustrated in the
preceding screenshot. Additionally, hovering over the
Query field displays a formatted version of the DAX query,
thus making it easy to identify the DAX measure(s)
involved.

9. Stop the trace via the stop icon in the All Queries pane
(above StartTime).

10. Double-click a value from the row of the All Queries pane
representing the slowest query (for example, Duration =
111) to add this query to the editor window:

1. The values in the User, Database, and Query fields can
all be used to add the query to the editor window.

2. Alternatively, the Copy All icon (up arrow) in the
All Queries pane can be used to add all queries
from the trace to the editor window.

11. Select the Server Timings icon in the middle of the Home
tab to start a new trace:

1. Select the Server Timings pane that appears at the
bottom (to the right of All Queries)

12. With the slowest query from step 7 in the editor window,
click the Run icon, or hit F5 to execute the DAX query.

In the following screenshot, the query from the original trace
against the Power BI Desktop file (AdWorksEnterpriseDQ), which
required 111 ms in duration, was executed in 106 ms from DAX
Studio:

The Server Timings window in DAX Studio

As shown in the preceding image, the editor window displays the
Internet Net Sales Amt measure, and the Server Timings pane at the
bottom identifies the duration of the query (106 ms). Given that
the dataset for this example is in DirectQuery mode against a
SQL Server database, the T-SQL statement generated and passed
to the database server is displayed in the Query field and window
to the right (not shown). This T-SQL statement can be easily
copied into another application, such as SQL Server Server

Management Studio (SSMS), and executed directly against
the source or saved as its own .sql file.

For DirectQuery datasets, use traces in DAX Studio to collect the SQL
statements associated with the slowest-performing DAX queries. The
team responsible for the DirectQuery source (for example, Teradata)
may be able to identify the cause of the issue such as the columns
referenced in the filter condition. Additionally, if referential integrity is
enforced in the DirectQuery data source, ensure that the SQL statements
generated use inner join conditions. Inner join SQL statements will be
generated if the Assume referential integrity property of the Edit
relationship window has been enabled.

As an alternative to the All Queries trace of a Power BI dataset, a
new DAX measure could be tested against an existing DAX
query. For example, a common grouping query built with the
SUMMARIZECOLUMNS() DAX function and stored in a .dax or .msdax file
could be opened in DAX Studio. The new DAX measure
contained in the dataset could be referenced in the editor
window and the query could be executed with a trace running
(via Server Timings). The performance results of the new
measure could be compared against the baseline results from
common measures (for example, Net Sales and Count of Orders) to
obtain a sense of relative performance.

Additionally, two DAX measures which return the same results
but utilize distinct logic or functions could be tested against each
other in DAX Studio to determine which measure is more
performant. DAX measures already added to the Power BI
dataset can be accessed via the Metadata pane, and DAX
measures can also be defined within the Power Query Editor
window via the DEFINE clause.

The following URL contains the full syntax of using DAX as a
query language http://bit.ly/2FoRF2y.

http://bit.ly/2FoRF2y

Summary
This chapter developed and described several common classes of
DAX measures, including date intelligence, dimension metrics,
and ranking metrics. These measures utilized the fact and
dimension tables accessed in Chapter 8, Connecting to Sources and
Transforming Data with M, as well as the data model
relationships defined in Chapter 9, Designing Import and
DirectQuery Data Models. In addition to detailed measure
examples, primary concepts of the DAX including filter context,
row context, measure evaluation, and DAX variables were also
reviewed. Moreover, examples of standard and DRLS models
were shared, and DAX Studio was presented as a tool for testing
and tuning DAX.

In the following chapter, Power BI reports will be created which
leverage the dataset that has been incrementally developed since
Chapter 8, Connecting to Sources and Transforming Data with M.
Report-authoring features, such as the visualization types in
Power BI Desktop, will access the DAX measures from this
chapter and the dimensions from previous chapters to deliver
business insights and intuitive, self-service functionality.

Creating and Formatting Power
BI Reports
In this chapter, we will create Power BI reports based on the
dataset developed over the past three chapters and published to
the Power BI service. We will review a report-planning and
design process as well as all primary report formatting features
in the context of visualization best practices. Additionally, we
will look at report behavior and functionality features, such as
alternative filter scopes, slicers, and conditional formatting
options.

This chapter also highlights several of the latest and most
powerful Power BI report features, including visual interactions,
top N, relative date filters, and What-if parameters. The reports
developed in this chapter can be further supplemented with
custom visuals and advanced analytics from the following
chapter to serve as a supporting analysis layer to Power BI
dashboards.

In this chapter, we will review the following topics:

Report planning

Live connections to Power BI datasets

Visualization best practices

Choosing the visual

Visual interactions

Slicers

What-if parameters

Report filter scopes

Relative date filtering

Conditional formatting

Mobile-optimized reports

Report planning
Power BI reports can take on a variety of forms and use cases,
ranging from executive-level dashboard layouts to highly
detailed and focused reports. Prior to designing and developing
Power BI reports, some level of planning and documentation is
recommended to ensure that the reports are well aligned with
the needs of the users and the organization.

Effective report planning can be encapsulated in the following
five steps:

1. Identify the users or consumers of this report:

1. Senior managers generally prefer less self-service
interactivity and value simple, intuitive visuals,
such as KPIs.

2. Analysts often require significant flexibility to
filter and interact with more detailed reports. For
example, reports used by analysts generally
include more slicer visuals and may include table
or matrix visuals as well.

Separating reports by user role or group serves to keep
reports focused for users and more manageable for BI
teams. In many scenarios, an organizational hierarchy
provides a natural demarcation such that reports can
be designed for specific roles or levels within an

organization.

In the project example for the Adventure Works sales
team, reports could align with the Sales Territory
hierarchy (Sales Territory Group | Sales Territory Country | Sales
Territory Region). The vice president of group sales will
value high-value corporate-wide metrics and intuitive
dashboard reports. A sales analyst in the United
States, however, will likely need to break out
individual regions and even analyze specific zip codes
or individual products.

2. Define the business question(s) that the report should
answer or support:

1. Confirm with the business user(s) or project
sponsors that this is the appropriate focus and
scope of the report:

1. A report architecture diagram described in
the next section can support this
communication.

2. For example, the user could be advised
that a particular business question or
metric will be included in a different
report but will be featured on the same
dashboard and will be easily accessible
within the same Power BI app.

2. The most important business question (for

example, What were our sales?) will be addressed
in the top-left corner of the report canvas, likely
with a KPI or card visual.

Similar to separating reports by user role or group, a
report should not attempt to resolve widely disparate
business questions. A sales report can, for example,
provide high-level metrics on other business
processes, such as customer service, inventory, or
shipping. However, the supporting visuals of a report
should almost always be derived from the same
business processes and fact tables as the primary
business question, such as Internet Sales and Reseller
Sales.

3. Confirm that the dataset supports the business questions:

1. The report author should ensure that the dataset
includes measures such as year-over-
year (YOY) sales and the dimension columns
(for example, Product Category) necessary to visualize
the business questions.

It's very important that report authors have a solid
understanding of the Power BI dataset. This
knowledge includes the logic and business definitions
of DAX measures, the relationships defined between
fact and dimension tables, and any data
transformation logic applied to the source data. In
many projects, report authors will regularly
collaborate with business stakeholders or project

sponsors in gathering requirements and
demonstrating report iterations. Therefore, the
authors will need to explain the values and behaviors
of Power BI reports as well as any current limitations
in the dataset, such as the years of history supported
and any DAX logic or measures not yet created:

If a gap exists between the dataset and the
measures required for the report, the team can
determine whether the dataset should be
extended or whether the measure should be
created local to the report

Only measures can be created within Power BI
Live connection reports

Any new columns, tables, or modifications to
existing tables or columns must be implemented
within the source dataset

The set of base measures described in Chapter 10,
Developing DAX Measures and Security Roles, as well
as the dynamic date dimension columns described in C
hapter 8, Connecting to Sources and Transforming
Data with M (for example, Calendar Month Status = 'Prior
Calendar Month'), should support the most common needs
of reports. If a measure required for a report is
considered to be common to other future reports, and
if the measure doesn't violate the single corporate
definition of an existing measure, the measure should
generally be added to the dataset. However, if the
report requirement is considered rare or if a measure

definition has been approved only for the specific
report, then the measure(s) can be created local to the
report. For version control and manageability reasons,
report authors should not have to implement complex
filtering logic or develop many local report measures.
Report authors should communicate with dataset
designers and the overall team if a significant gap
exists or is developing between reports and the
dataset.

4. Determine how the report will be accessed and the nature
of any user interactivity:

1. Reports and dashboards can be optimized for
mobile device consumption if this use case is
expected

2. Power BI Desktop supports slicer visuals, a What-
if parameter, and visual interaction options as
standard features:

1. Reports can, therefore, be designed for
static consumption or to support rich data
exploration

5. Draw a sketch of the report layout:

1. At least for the primary page of the report,
document how the area of the report canvas will
be allocated

The following sample sketch is created within a
PowerPoint presentation file via the standard shape
objects:

Sample report layout sketch

Per the sample layout, the critical sales and
margin measures are located in the top-left corner
of the report page:

Slicer (filter) visuals are planned for below
these KPI or card visuals and other visuals
will add further context

Greater space is allocated to the two
visuals in the middle of the page given
their importance to the report

The report layout sketch can be used exclusively
for planning purposes or can be set as the
background for a report page

For example, a PowerPoint slide of the
same shapes, background shading, and
borders can be saved to a network
directory as a PNG file

In Power BI Desktop, the PNG file can be
imported via the Add Image formatting
option under Page Background or via the
insert an image icon on the Home tab in
Report view

Page background images with proper
alignment, spacing, and colors can
expedite quality report development

Be willing to modify a report layout or even start afresh with a
new layout based on user feedback. Unlike dataset development,
which can require significant time and expertise (for example,
DAX, M, SQL), reports can be developed in a rapid, agile delivery
methodology. Report authors can engage directly with users on
these iterations and, although recommended practices and
corporate standards can be communicated, ultimately the

functional value to the user is the top priority. It's important to
distinguish flexibility in report layout and visualization from the
report's target users and business questions. Second and third
iterations of reports should not, for example, call for
fundamentally different measures or new report pages to
support different user groups. Report authors and BI teams can
work with users and project sponsors to maintain the scope of
IT-supported reports. The interactivity built into Power BI
reports and the self-service capabilities provided by Power BI
Pro licenses can broaden the reach of projects without requiring
new or additional reports.

Power BI report architecture
Similar to the data warehouse bus matrix described in Chapter
7, Planning Power BI Projects, a report architecture diagram can
be helpful for planning and communicating Power BI projects
with both business and IT stakeholders. This diagram serves to
maintain the scope and focus of individual reports. For example,
certain business questions or entities (such as Customers, Products)
can be assigned to dedicated reports and the individual pages of
these reports can visualize these questions or entities at varying
levels of detail.

Most commonly, a single report page will address the top
priority of a report at a summary level. This page includes cards
and/or KPI visuals at the top-left of the page and charts rather
than tables or matrices that visualize these metrics at a high
level. Additional report pages, usually 3-4 maximum, would be
designed to provide a greater level of detail supporting the
summary page. With this report structure, a user can naturally
start their analysis from an intuitive and visually appealing
summary page and then, if necessary, navigate to pages exposing
greater levels of detail.

In addition to supporting report pages with greater detail, Drillthrough
report pages can be designed to display the details for an individual
item, such as a specific product or a combination of items, for example,
the year 2018 and a specific product. The Drillthrough report pages
section of Chapter 12, Applying Custom Visuals, Animation, and
Analytics provides details and examples of this feature.

In the absence of a report architecture or diagram, reports can
quickly become less user-friendly as many report pages are
added that address unrelated business questions. Additionally,
the lack of scope or focus for a report can lead to duplicated

efforts with the same business question being visualized in
multiple reports.

Guidance from stakeholders on the visuals to be included in or featured
on a dashboard can strongly inform the report design process. If several
dashboard tiles, particularly those intended in the top or left section of
the dashboard, are closely related (for example, profitability %) then it's
likely that multiple reports, each with multiple pages, should be designed
to support further related analysis of these tiles. However, if only one
dashboard tile relates to a particular business question or entity, such as
resellers, then the supporting report may only need 1-2 pages and
provide relatively less detail.

In the following basic example, four reports and one dashboard
are planned for the German sales team:

Sample report architecture diagram

In this sample, at least one visual from each of the four reports
would be pinned as a tile on the Germany Sales and Margin dashboard.
By default, this would link the reports to the dashboard such that
a user could access the details of any of the four reports by
clicking on a related dashboard tile. Visuals from a single report
can be pinned as tiles to multiple dashboards. Additionally, a
dashboard tile can be linked to a separate dashboard or to a
separate report in the Power BI service. Chapter 13, Designing
Power BI Dashboards and Architectures include additional
details and examples of Power BI report and dashboard
architectures.

The four reports and the dashboard from the preceding example
could be included in a dedicated app workspace for the German
sales team or within a broader workspace that supports multiple
sales teams and related content (for example, marketing) in the
organization. If a Power BI dataset is used as the source for
Power BI reports, then consolidating reports and dashboards
into a broader app workspace avoids the need to duplicate this
dataset across other workspaces given the current dependency
between Power BI Live connection reports and datasets within
the same workspace. Information on app workspaces and
content distribution via apps are provided in Chapter 14, Managing
Application Workspaces and Content and Chapter 17, Creating
Power BI Apps and Content Distribution. The following section
describes Live connection reports to Power BI datasets published
to the Power BI service.

Understand and communicate the differences between Power BI reports
and dashboards. Although report pages can look like dashboards to
users, Power BI dashboards are generally best suited to integrating the
essential visuals from multiple reports. Dashboards deliver a holistic, at-
a-glance view of strategic metrics while reports are more narrowly
focused on specific business questions. Additionally, reports provide
interactive, analytical features (for example, slicer visuals) for users to
leverage in a self-service.

Live connections to Power BI
datasets
One of the most important features released in 2017 was the
ability to use published Power BI datasets as a source for Power
BI reports. With Live connections to Power BI datasets, report
authors can develop reports in Power BI Desktop files containing
only the visualization layer (for example, report pages of visuals)
while leveraging a single dataset.

The dataset, which is generally developed and managed by a
different user or team, already includes the data retrieval
supporting tables and columns, the data model relationships,
and the DAX measures or calculations as described in previous
chapters. Once the Live connection report is developed and
published to Power BI, it will maintain its connection to the
source dataset and will be refreshed with the refresh schedule
configured for the dataset.

Prior to Live connection reports to Power BI datasets, users
within teams would frequently create multiple versions of the
same dataset in order to create different reports. As both a report
and a dataset, each individual report would require its own
scheduled refresh process (in import mode), its own data
storage, and would create version control problems as the report
author could modify the underlying dataset. Live connection
reports therefore severely reduce resource requirements and
promote a single version of the truth. Moreover, Live connection
reports facilitate the isolation of report design and development
from dataset design and development.

Most Power BI report authors will not be interested in or responsible for
dataset design topics, such as data retrieval with M queries, data
modeling, and DAX measures. Likewise, a dataset designer is often less
interested in or responsible for visualization best practices and the
engagement with the actual users of reports and dashboards. As advised
in Chapter 7, Planning Power BI Projects, it's important for the alternative
roles (dataset designer, report author) to regularly collaborate, such as
by identifying measures or columns that need to be added to the dataset
to support reports and dashboards.

To create a Live connection report with a published Power BI
dataset as the source, the report author needs a Power BI Pro
license and will need to be a member of the app workspace
hosting the dataset with edit rights.

In the following example, the report author is a member of the
Corporate Sales app workspace and creates a new report in Power BI
Desktop by connecting to the AdWorks Enterprise dataset within this
workspace:

Creating a Live connection to the Power BI dataset

After selecting the Power BI service from the list of Online
Services within the Get Data dialog, the list of the workspaces of
which the report author is a member is prompted. In this
example, either double-clicking the AdWorks Enterprise dataset or
clicking the Load button will establish the Live connection per
the status bar in Power BI Desktop:

Live connection status bar
The same field list of measures and tables is exposed in Report View but
the Relationship View and Data View do not appear. Likewise, once the
Live connection has been established, the Get Data dialog is also grayed
out. Live connection reports to Power BI datasets and SQL Server
Analysis Services (SSAS) databases are always limited to a single

data model as a source.

Live connection reports are published to the same app
workspace as their source dataset. In the following example, a
report file named USA Sales and Margin, which is connected to the
AdWorks Enterprise dataset in the Corporate Sales workspace has been
published from Power BI Desktop:

Published Live connection report

Per the preceding image, the report will appear in the workspace
of the source dataset (Corporate Sales) in Power BI. Since the report
was published from Power BI Desktop, the report (.pbix file) can
be downloaded by opening the report and clicking Download
report from the File menu.

It's possible to create reports based on Power BI datasets within the
Power BI online service. However, the .pbix files for these reports cannot
be downloaded and thus all edits must be implemented within the service

without version history. Additionally, several important report
authoring features in Power BI Desktop are not supported in the service,
including the alignment of objects and local report measures. Given these
considerations, Power BI Desktop is recommended for any report
development beyond personal or ad hoc use. Guidance on version history
for Power BI Desktop files (reports and datasets) is included in Chapter 14,
Managing Application Workspaces and Content.

Customizing Live connection
reports
Although data modeling and retrieval capabilities are removed in
Live connection reports, report authors have the ability to create
new measures specific to the given report via the New Measure
icon under the Modeling tab. Additionally, report authors can
change the names of measures and columns displayed in reports.

In the following example, the Internet Net Sales measure and the
Customer Country column have been renamed to Net Sales and Country,
respectively:

Renamed measure and column in Visual

Double-clicking the name of the column or measure in the field

well(s) for the visual exposes an input box for the revised name.
Per the preceding image, the revised names will appear in the
report visual and the Tooltips in the field wells will indicate the
source column or measure. In this example, the Internet Net Sales
measure, with a home table of the Internet Sales fact table, is the
source for the Net Sales alias name.

Although the flexibility to create measures and apply names within
reports is helpful and appropriate in certain scenarios, these revisions
can create complexity and version control issues. For example, users can
become accustomed to specific measures and names that the dataset
designer is not aware of and that may conflict with other measures or
names in the dataset. Therefore, it's generally recommended to
incorporate the necessary measure logic and standard names into the
source dataset.

Switching source datasets
In many project scenarios, a Power BI report will initially be
built against a development or testing dataset. After this report
has been validated or received the proper approvals, the report's
source dataset can be switched to a production dataset and the
report can then be published to the production app workspace
used for distributing Power BI content to users.

To switch the Power BI dataset of a Live connection report, click
the Data Source settings icon under the Edit Queries drop-down
menu under the Home tab. In the following two steps with
supporting images, a report is switched from a dataset in the
Corporate Sales workspace to a dataset in the North America Sales
workspace:

1. Open the Power BI service data source window via Data
source settings:

Data source settings for a Live connection report

2. Select the new dataset to use as the source for the report:

1. Either double-click the dataset or click the Load
command button to establish the connection:

Power BI dataset sources

3. Confirm the source dataset has changed via the status
bar:

Source Power BI dataset switched

See Chapter 14, Managing Application Workspaces and
Content for details on Power BI project life cycles, such as
migrating from development to production environments and
version control.

Visualization best practices
Effective reports are much more than simply answering
documented business questions with the available measures and
columns of the dataset. Reports also need to be visually
appealing and provide a logical structure that aids in navigation
and readability. Business users of all backgrounds appreciate a
report that is clear, concise, and aesthetically pleasing.

Now that the report-planning phase described earlier is
complete, the following list of 15 visualization practices can guide
the report development process:

1. Avoid clutter and minimize nonessential details:

1. Each visual should align with the purpose of the
report—to gain insight into a business question:

1. Visualizations should not represent wild
guesses or functionality that the author
finds interesting

2. Eliminate report elements that aren't essential for
gaining understanding:

1. Gridlines, legends, axis labels, text boxes,
and images can often be limited or

removed

3. The report should be understandable at a glance,
without supporting documentation or
explanation.

A simple but helpful test is to view a Power BI report on a laptop screen
from a distance of 12 to 15 feet, such as from the opposite end of a
conference room. At this distance, it will be impossible to read any small
text and only the shapes, curves, and colors will be useful for deriving
meaning. If the report is still meaningful, this suggests the report is
effectively designed visually.

2. Provide simple, clear titles on report pages and visuals:

1. Text boxes can be used to name or describe the
report, report page, and provide the last-refreshed
date

3. For chart visuals, use the length of lines and the two-
dimensional position of points to aid visual
comprehension:

1. In line charts, users can easily perceive trends and
the divergence of lines relative to each other

2. In column or bar charts, users can easily
distinguish relative differences in the length of
bars

3. In scatter charts, users can quickly interpret the

two-dimensional position of data points relative
to each other

The purpose of these two attributes (line length, 2-D position) as the
primary communication mechanism is to guide the user to an accurate
assessment with minimal effort. Other visual attributes such as color,
shape, and size can also be beneficial, particularly when these properties
are driven by the data, such as with conditional formatting and KPIs.
However, line length and 2-D position (X, Y coordinates) have a natural
advantage in visual perception. For example, the differences between
three items on a clustered column chart are much more obvious than the
same three items presented on a pie chart.

4. Position and group visuals to provide a logical navigation
across the canvas:

1. The most important visuals should be positioned
in the top-left corner of each report page

2. If multiple visuals are closely related, consider
grouping them within a shape object

5. Use soft, natural colors for most visuals:

1. Avoid overwhelming users with highly saturated
bright or dark colors

2. Only use more pronounced colors when it's
necessary to make an item stand out, such as
conditional formatting

6. Only apply distinct colors to items in chart visuals when

the colors convey meaning:

1. For example, three colors might be useful for the
data points of three separate product categories

7. Align visuals to common and X and Y pixel positions:

1. For example, if a visual in the top-left corner of a
page has X and Y position values of 20 and 40,
respectively, then other visuals on the left side of
the canvas should also have an X Position of 20

2. Likewise, the top visual(s) on the right side of the
canvas should align with the left visuals at a Y
position of 40

8. Distribute visuals vertically and horizontally to create an
equal amount of space between visuals:

1. The amount of spacing should be adequate to
clearly distinguish the visuals as separate entities

With one or multiple visuals selected in Power BI
Desktop, a Format tab will appear on the ribbon per the
following image:

Alignment, distribution, and Z-order format options
The three format options (Align, Distribute, and Bring forward and
Send backward (Z-order)) are consistent with common MS Office
applications, such as Excel and PowerPoint. Between these formatting
options and the four properties available under the general formatting
card for all visuals (X Position, Y Position, Width, and Height). Report
authors can ensure that visuals are properly aligned and spaced. The
Show gridlines and Snap objects to grid options under the View tab also
support alignment.

9. Choose a page background color that will naturally
contrast with visuals, such as the default white or a very
light gray.

10. For column and bar charts, sort visuals by their measure
to provide an implicit ranking by the given measure:

1. This sorting is only applicable to nominal
categories, such as product categories, when the
individual items in the category don't need to
follow a custom sort order

11. Fill the available report canvas space; avoid large blank
spaces in report pages.

12. Provide supporting context via tooltips and additional
lines in charts, such as target values and the min, max,

and average:

1. Several measures related to a given visual can be
displayed via tooltips without incurring
performance penalties

2. The Power BI Analytics pane provides several
support lines, including a trend line and a
predictive forecast line

13. All report pages should follow a common design theme
and color palette:

1. Preferably all reports in a project and even for an
organization should follow the same basic design
guidelines

A Switch Theme icon on the Home tab of Power BI
Desktop in Report View exposes options for importing a
report theme and thus overriding the default color and
formatting properties:

Import report theme
Custom Report Themes are a preview feature as of the November 2017
release of Power BI Desktop and allow organizations to apply a custom
set of formatting properties to Power BI reports. For example, an
organization can embed its corporate colors into a report theme (a JSON
file) to apply this set of colors to all Power BI reports. Additionally, more
elaborate formatting properties can be specified in report themes to
standardize report development, such as the font family and font sizes.
Existing report themes are available for download from the Power BI
Report Theme Gallery (http://bit.ly/2pyUKpl). Additionally, tools and
documentation are available for easily generating report themes, such as
the Power BI Tips Color Theme Generator (https://powerbi.tips/tools/color-theme-ge
nerator/).

14. The quantitative scale for column and bar charts must
start at zero:

1. Custom quantitative scales, such as from 12% to
15%, can be applied to line, scatter, and bubble
charts to emphasize specific ranges of values

Consider two items, Product A and Product B, of a clustered column chart with
margin percentage values of 32% and 34%, respectively. With a base of
zero, the two items would correctly appear similar for the given
measure. However, if the base value of the visual starts at 31% and the
max value of the scale is set to 35%, Product B would visually appear as a
dramatically higher value. This distortion is the reason that quantitative
scales for column and bar charts must start at zero.

http://bit.ly/2pyUKpl
https://powerbi.tips/tools/color-theme-generator/

15. Lines should only be used to connect interval scale data
points, such as time series and ordered bins of values:

1. A line should not, for example, represent the sales
for different product categories

2. A line should, however, represent the sales of
products by unit price bins (for example, $0 to
$10, $10 to $20, and so forth)

Visualization anti-patterns
In addition to report planning and generally aligning reports
with visualization best practices, it can be helpful to acknowledge
and avoid several common visualization anti-patterns. For many
reports, particularly when report development time and Power
BI experience is limited, simply avoiding these anti-patterns
coupled with adequate planning and appropriate visual type
choices is sufficient to deliver quality, sustainable content.

Six of the most common visualization anti-patterns include the
following:

A cluttered interface of many visuals and report elements
that's complex or difficult to interpret:

This is often the result of too many visuals per
report page or too high a precision being
displayed

Separate reports, report pages, and the removal of
unnecessary details and precision can improve
usability

A lack of structure, order, and consistency:

Each report page should naturally guide the user
from the essential top-left visuals to the

supporting visuals

A failure to align visuals or to provide proper
spacing and borders can make reports appear
disorganized

Mixing widely disparate grains of detail on the
same report page can be disorienting to users

High density and/or high detail visualizations, such as
large table visuals or thousands of points on a scatter
chart or map:

The need for a scrollbar is a strong indication that
a visual contains too many values

A table visual should not be used as a raw data
extract of many columns and rows

High density visuals, such as line and scatter
charts with thousands of data points, can cause
poor performance

The following table visual with six dimension columns
and three measures is an example of a data extract
anti-pattern:

Data extract anti-pattern

The small scrollbar on the right indicates that many
rows are not displayed. Additionally, the export data
option prompts the warning message (data exceeds the
limit) suggesting the visual contains too much data.

The excessive use of fancy or complex visuals and images:

Reports can be aesthetic and engaging but the
priority should be to inform users, not to impress
them.

For example, a column chart or a stacked column
chart will usually be more effective than a
treemap.

Suboptimal visual choices such as pie charts, donut
charts, and gauges:

Column or bar charts are easier to interpret than
the circular shapes of pie and donut charts.

KPI visuals provide more context than gauge
visuals including the trend of the indicator value.

The misuse of colors, such as utilizing more than five
colors and overwhelming users with highly saturated
colors:

Colors should be used selectively and only when
the few alternative colors convey meaning.

Choosing the visual
With the report planning phase completed, an essential task of
the report author is to choose the visual(s) best suited to gain
insight into the particular questions within the scope of the
report. The choice of the visualization type, such as a column
chart or a matrix visual, should closely align with the most
important use case, the message to deliver, and the data
relationship to represent.

Visualization types have distinct advantages in terms of visual
perception and types of data relationships such as part-to-whole
and comparisons. Additionally, although several formatting
options are common to all visuals, certain options such as the
line style (solid, dashed, dotted) of a line chart are exclusive to
specific visuals.

A standard visual selection process is as follows:

1. Plan and document the business question(s) and related
measures and dimension columns.

2. Determine whether a table, a chart, or both will be
needed to best visualize this data.

3. If a chart is needed, choose the chart visual that's best
aligned with the relationship (for example, trend,
comparison, correlation).

Following these three steps helps to ensure that effective reports
are developed with efficient resources. Many other visualization

and analysis features can be used to further enhance reports but
these should only supplement report planning and design.

Power BI currently supports 25 standard visualizations, and many more
custom visualizations can be imported from the MS Office Store. The
standard visuals are aligned with the most common analytical
representations including trend, rankings, part-to-whole, exceptions,
geospatial, and distribution. Several of these visuals can be further
enhanced via the Analytics pane and a vast array of custom visuals can
be easily imported to reports from the MS Office Store. See the following
chapter for additional details on the Analytics pane in Power BI Desktop
and custom visuals.

Tables versus charts
An initial step in the visualization selection process is to
determine whether a table, a chart, or a combination of both is
most appropriate. Power BI's table visual provides simple row
groups of dimension values and measures, and the matrix visual
supports both an X and a Y-axis field like a pivot table in Excel.
Both the table and the matrix visuals are superior to charts in
enabling users to look up specific data points. However, despite
conditional formatting options available to table and matrix
visuals, charts are superior to table and matrix visuals in
displaying trends, comparisons, and large volumes of distinct
data points.

The following matrix visual breaks down the AdWorks Net Sales
measure by two product dimension columns and two promotion
dimension columns:

Matrix visual

The product hierarchy created in Chapter 9, Designing Import and
DirectQuery Data Models is used as the rows' input and a
promotion table hierarchy is used as the columns' input. Via the
expand all down feature for both the rows and the columns, the
matrix provides easy access to specific data points, including
subtotals by both product categories and promotion types.
Although it's clearly possible to visualize the same data with a
chart, a matrix visual (or a table visual) makes it easy to locate
individual values and to display the exact values with no
rounding.

Additionally, if a table or matrix is needed to reference individual
values but less precision is required, the field formatting card in
the formatting pane allows the report author to define the
display units (for example, thousands (K), millions (M)) and the
number of decimal places for the measure. The same two
formatting properties (display units and value decimal places)
are also accessible for chart visuals via the data labels formatting
card in the formatting pane.

Although they're rarely used in Power BI dashboards, Power BI's table
and matrix visuals were significantly enhanced throughout 2017 to
provide more granular formatting controls. Matrix features, such as
showing values (for example, multiple metrics) as individual rows, as a
percentage of column or row totals, and full control over subtotals
positions Power BI matrix visuals as an alternative to many Excel pivot
tables and matrix reports in SQL Server Report Services (SSRS).
Additionally, table and matrix visuals are interactive such that user
selections on a row, a specific value, or a row or column header will filter
other visuals.

The following line chart visual breaks down the AdWorks Net Sales
measure by the calendar year week:

Line chart visual

With 18 different data points displayed, the periodic spikes of the
line help to identify the specific weeks with relatively higher net
sales. In this example, the AdWorks Net Sales measure is highest in
the fourth or last week of the month and is especially higher at
the end of March—the first quarter. The drawback or tradeoff of
this visual relative to the prior matrix visual is the lack of
subtotals and the loss of precision given the rounding to one
decimal place.

Line charts are uniquely advantaged to call out patterns, trends,
and exceptions in measures across time. More generally, chart
visualizations (for example, bar, column, scatter) are
recommended over table and matrix visuals when the shape or
position of the data, such as trends, comparisons, correlations,
and exceptions, is more valuable than the individual values.

With a date hierarchy or the date columns in the chart axis input field,
the concatenate labels property in the X-axis formatting card should be
turned off to provide the grouped layout per the preceding line chart
example. Additionally, also included in the line chart example visual, the
X-axis gridlines can be turned on to separate the parent values (for
example, 2017-Feb).

Chart selection
Chart visuals can broadly be categorized into the following four
types of data relationships:

Comparison: How items compare against each other or
over time

Relationship: How items relate (or correlate) to one
another across multiple variables

Distribution: The most common values for a variable
and the concentration of values within a range

Composition: The portion of a total that an item
represents relative to other items, possibly over time

The following table associates specific visuals to these categories
and briefly describes their top use cases:

Chart visuals by category

As a table of chart types, map visuals, and the three standard
single number visuals provided in Power BI Desktop—Cards,
Gauge, and KPI, are excluded. Single number visuals are
commonly used in dashboards, mobile optimized reports, and in
the top-left section of report pages to deliver easy access to
important metrics.

The standard single number visuals (Card, Gauge, KPI) can also be used
to create data alerts when these visuals are pinned to Power BI
dashboards. Alerts can be created and managed in both the Power BI
service and on the Power BI mobile applications. With an alert set on a

dashboard tile representing one of these visuals, whenever the number of
the visual crosses a defined condition (for example, above 100), a
notification will be raised and optionally an email will be sent as well.

Details on standard map visuals are included in the Map visuals
section of this chapter and the ArcGIS Map visual for Power
BI is reviewed in Chapter 12, Applying Custom Visuals, Animation
and Analytics.

There are several publicly available resources on visualization practices
and visual selection. The Chart Suggestions diagram from Extreme
Presentation (http://bit.ly/1xlXh1x) provides additional details on the visuals
and visual categories described in this section. Additionally, the SQL BI
team provides a Power BI Visuals Reference (http://bit.ly/2ndtcZj) that
categorizes visuals at a more granular level than the table in this
section.

http://bit.ly/1xlXh1x
http://bit.ly/2ndtcZj

Visual interactions
By default, the filter selections applied to a single visual, such as
clicking a bar on a column chart or a row on a table, will impact
all other data visualizations on the given report page with
relationships to the selection. In the following example, the bar
representing the United States sales territory country has been
selected and this causes the product category chart to highlight
the portion of each product category related to the United States
sales territory country ($31.3M):

Visual Interactions – Highlighting

Multiple values from the same column can be selected (for
example, France and Canada) and the values from separate columns
of the same visual, such as the dimension columns of a table
visual, can also cross-filter other visuals on the report page. The
ability to drive visual interactions from the selections of two or
more visuals (for example, United States and Bikes) is not currently
supported excluding slicers.

The highlight interaction option from the preceding example is
available and enabled by default for column, bar, treemap, pie,
and donut charts. Only the filter and the none interaction
options are available for cards, KPIs, and line and scatter chart
visuals.

Per prior chapters, the Sales Territory, Product, and Date dimension tables are
related to all three fact tables—Internet Sales, Reseller Sales, and Sales and Margin
Plan. Therefore, the filters and selections applied to the columns of these
tables will simultaneously impact measures from other fact tables. This
integration within the dataset supports robust analyses but can also
require some training or explanation to users as they may not initially
expect or understand the cross-filtering behavior.

Edit interactions
Report authors can modify the visual interaction behavior such
that selections (user clicks) on certain visuals don't impact other
visuals or only impact certain visuals. Additionally, for the
visuals set to the highlight interaction by default, report authors
can revise the interaction behavior to filter.

In the following example, the United States selection in the middle
bar chart has no impact on the multi-row car visual but causes a
filter interaction (rather than highlight) on the product category
chart:

Edit interactions in Power BI Desktop

To edit visual interactions, select the visual that will receive the
selections and then enable the Edit interactions command under
the Format tab in Power BI Desktop. In this example, the None
interaction icon has been selected for the multi-row card visual
and the Filter interaction icon has been selected for the Product
Category column chart.

Like the preceding example, it's often appropriate to disable visual
interactions from impacting the card or KPI visuals in the top-left corner
of the reports. These values can be impacted exclusively by the filters
defined outside of the report canvas, such as report and page level filters,
and will not change during user sessions like other visuals on the page.

Regardless of the design decision, if users will regularly interact with
reports, such as clicking on slicers and other visuals, it's important to
briefly review or explain the visual interaction behavior. This is
especially necessary with new users and with more customized designs,
such as 2-3 visuals with interactions enabled and 2-3 visuals with
interactions disabled.

What-if parameters
Power BI Desktop provides a user interface for more easily
creating What-if parameters than the custom slicer parameter
demonstrated earlier in this chapter. This option is currently
limited to numeric parameter values but automatically creates a
single column table and a DAX measure that retrieves the input
value.

In the following example, two What-if parameters are used to
calculate alternative unit price and unit cost values thereby
driving a hypothetical product margin % measure:

What-if parameters applied in report visuals

By adjusting the two slider bars, a user is able to quickly model
an alternative gross product margin % scenario, as illustrated by
the dotted line in the line chart visual. The slider bar for
modifying a single value is unique to slicers for What-if
parameter columns.

To create a What-if parameter, click the New Parameter icon on
the Modeling tab in Report View to launch the following dialog:

Creating a What-if parameter

Based on the minimum, maximum, and increment input values
specified, a new table with a single column of values will be
created within the Power BI dataset. For the Unit Price Growth
parameter, this column has 20 rows from 0 to .19 with each
value representing a full percentage point (for example, 0% to
19%). Additionally, a new DAX measure is created automatically
to retrieve the user selection, per the following expressions:

Internet Sales Unit Price Growth Value =
SELECTEDVALUE('Internet Sales Unit Price Growth'[Internet Sales Unit Price Growth], 0)

Internet Sales Product Unit Cost Growth Value =
SELECTEDVALUE('Internet Sales Product Unit Cost Growth'[Internet Sales Product Unit Cost Growth], 0)

With the second argument to both functions set to 0, both growth values
will return zero if a selection hasn't been made or if multiple values have
been selected. The same SELECTEDVALUE() function, which was added to the
DAX language in 2017, was also used in the custom slicer parameters
example earlier in this chapter.

The only remaining step is to create one or more measures that
reference the parameter values in their calculation logic. In this
example, the Unit Price and Unit Cost growth parameters are applied
to gross sales and product cost scenario measures, respectively.
These two scenario measures are then used to compute a product
margin scenario measure and a product margin % scenario
measure, per the following expressions:

Internet Gross Sales Scenario = SUMX('Internet Sales','Internet Sales'[Order Quantity]*
 ('Internet Sales'[Unit Price]*(1 + [Internet Sales Unit Price Growth Value])))

Internet Sales Product Cost Scenario = SUMX('Internet Sales','Internet Sales'[Order Quantity] *
 ('Internet Sales'[Product Standard Cost] * (1 + [Internet Sales Product Unit Cost Growth Value])))

Internet Gross Product Margin Scenario =
[Internet Gross Sales Scenario] - [Internet Sales Product Cost Scenario]

Internet Gross Product Margin % Scenario =
DIVIDE([Internet Gross Product Margin Scenario],[Internet Gross Sales Scenario])

Although it's possible and sometimes necessary to create
parameter columns and measures manually, the What-if
parameter feature in Power BI Desktop can simplify this process
for many modeling scenarios. Additionally, the slider bar slicer
exclusive to the What-if parameter columns is the most user-
friendly option for selecting parameter values.

To change the range of values available to the parameter, select the
parameter column in the Fields list and modify the min, max, or
increment arguments to the GENERATESERIES() function. Based on the user
interface selections from the Unit Price Growth parameter, Power BI built the
following function: GENERATESERIES(0,20,.01).

Slicers
Slicer visuals represent a central element of self-service
functionality in Power BI in addition to the Visual interactions
behavior described in the previous section. The standard slicer
visual displays the unique values of a single column enabling
report users to apply their own filter selections. Additionally,
Power BI Desktop provides several formatting and filter
condition options available based on the data type of the column.
The following image contains three sample slicer visuals with
each slicer representing a different data type (text, number, date):

Slicer visuals

In this example, the three slicers filter for two sales territory
countries (Australia and France), a range of product list prices ($500
to $2,500), and the last 30 days inclusive of the current date
(11/15/2017 to 12/14/2017). Filter condition rules are available
for numeric and date columns in slicers, such as greater than or
equal to $500 and after 5/1/2017, respectively.

The numeric range slicer, such as the preceding $500 to $2,500 example,
is a preview feature as of the November 2017 release for Power BI
Desktop. In its current state, the numeric range slicer is exclusive to

Power BI Desktop and will appear as a standard list slicer in the Power
BI service. Additionally, only numeric columns can be used for the
numeric range slicers - DAX measures are not supported.

See the Report filter conditions and Relative date filtering
sections later in this chapter for additional details on relative
date filters.

By default, the Single Select option under the Selection Controls
formatting card is enabled and the Show "Select All... option is disabled.
These settings require users to hold down the Ctrl key to select multiple
items. For slicer visuals with many unique values, and when users
regularly need to exclude only one or a few items, enabling the Show
"Select All... option can improve usability. Additionally, for slicers based
on text data-type columns, users can search for values via the ellipsis in
the top-right corner of the visual.

To preserve space on the report canvas, the slicer visual supports
a drop-down option for all column data types. In the following
example, a single value is selected for the country and date
slicers but multiple values are selected for the price slicer:

Slicer visuals as dropdown

The drop-down option is most applicable to columns with many
unique values. Slicers are generally appropriate to empower
users with self-service capabilities such that they're not limited
to filter conditions defined outside the report canvas.

It's recommended to group slicer visuals together near the edge of a
report page. Slicers are most commonly aligned on the left side of the
page below the visuals in the top-left corner. If vertical canvas space is
limited, slicers displayed in list format can be presented horizontally
rather than vertically. The orientation formatting property (vertical or
horizontal) is available under the General formatting card.

Unlike other visuals (for example, charts, maps, tables), visual-
level filters cannot be applied to slicer visuals. Report and page-

level filters are required to reduce the available values displayed
on a slicer visual. Additional information on these filter scopes
and associated filter conditions supported are included in the
Report filter scopes section later in this chapter.

One of the most powerful features of slicers is the ability to filter
both the current report page and optionally other report pages
from a single slicer visual. The details of utilizing this feature
referred to as Slicer synchronization, are included in the
following section.

Slicer synchronization
By default, slicer visuals only filter the other visuals on the same
report page. However, via the Sync Slicers pane, report designers
can synchronize a slicer visual to also filter all other report pages
or only specific report pages. This feature eliminates the need to
include the same slicer on multiple report pages and thus
simplifies the user experience. For example, a common report
may utilize three slicers (for example, Year, Product Category, Sales
Country) and include four report pages. With slicer
synchronization configured, the report user would only need to
select values from these slicers on a single report page and the
visuals from all four report pages would be updated to reflect
these selections.

The Sync slicers pane can be accessed from the View tab of the
ribbon in Report View per the following image:

Sync slicers pane

Once selected per the preceding image, the Sync slicers pane will
appear to the right of the report page. A slicer visual from the
current report page can then be selected to configure its
synchronization with other pages.

In the following image, the Sales Territory Group slicer on the AdWorks

Sales report page has been selected but has not yet been
synchronized with other report pages:

Sync slicers Pane with slicer selected

To quickly synchronize the slicer to all other report pages, simply
click the Add to all link above the Sync and Visible icons. In this
example, the Add to all command would apply checkmarks
under the Sync icon for all four report pages. The Sales Territory
Group slicer would now filter all four report pages but would only
be visible on the AdWorks Sales page per the single checkmark
under the Visible icon.

Several other report design features are accessible from the View tab,
such as the Bookmarks and Selection panes, Show gridlines, and Snap
objects to grid. The Bookmarks and the Selection Pane are described in
the Bookmarks section of the following chapter. The Field Properties
pane is described in the Metadata management section of Chapter 14,
Managing Application Workspaces and Content.

Alternatively, the Sync slicers pane can be used to customize the
synchronization and visibility properties of the slicer per report
page. For example, the Sales Territory Group slicer could be set to
only filter (synchronize) three of the four report pages by
selecting or unselecting the checkmarks for these pages.
Additionally, checkmarks can be added to the Visible property to
display the slicer on other pages. With this approach, the user
would still only need to make a slicer selection once via

synchronization but could view the slicer on other report pages
to understand the current slicer selection(s) impacting the given
report page.

For reports with several report pages and common slicers, a
single report page could be dedicated to slicer selections and not
contain any other visuals. Report designers could configure
synchronization for each slicer on this page and instruct users to
only use this page for applying their filter selections for all pages
of the report. Moreover, a back button could be added to report
pages allowing the user to easily navigate back to the dedicated
slicer report page. An example of using a back button image is
included in the Drillthrough Report Pages section of Chapter 12,
Applying Custom Visuals, Animation, and Analytics.

Custom slicer parameters
A powerful use case for slicer visuals is to expose a custom list of
parameter values and drive one or multiple DAX measures based
on the user's selection. In the following example, a slicer visual
contains six date intelligence periods and a custom DAX
measure references the date intelligence measure corresponding
to the user's selection:

Slicer as a measure parameter

The table used for the slicer values could be defined within a
source system and retrieved during data refresh like other tables.
Alternatively, since the parameter values are unlikely to change,
the table could be created within Power BI Desktop and loaded
to the model but not included in a data refresh. Like all
parameter tables, no relationships would be defined with other
tables.

The custom measure, User Selected Internet Net Sales, utilizes the
SELECTEDVALUE() and SWITCH() functions to retrieve the user selection
and then apply the appropriate date intelligence measure. In this
implementation, a DAX variable is used to store the period
selection value, per the following expression:

User Selected Internet Net Sales =
VAR PeriodSelection = SELECTEDVALUE('Date Parameter'[Date Period Selection],"Year to Date")
RETURN
SWITCH(TRUE(),
 PeriodSelection = "Week to Date", [Internet Net Sales (WTD)],
 PeriodSelection = "Month to Date", [Internet Net Sales (MTD)],
 PeriodSelection = "Year to Date", [Internet Net Sales (YTD)],
 PeriodSelection = "Prior Week to Date", [Internet Net Sales (PWTD)],
 PeriodSelection = "Prior Month to Date", [Internet Net Sales (PMTD)],
 PeriodSelection = "Prior Year to Date", [Internet Net Sales (PYTD)]
)

The second parameter to the SELECTEDVALUE() function ensures that
the Year to Date measure will be used if multiple values have been
selected or if no values have been selected. If several additional
DAX measures will be driven by the parameter selection, a
dedicated measure could be created that only retrieves the
selected value. This supporting measure would then eliminate
the need for the variable since the support measure could be
referenced directly within the SWITCH() function.

See Chapter 10, Developing DAX Measures and Security Roles for example
expressions of date intelligence measures as well as measure support
expressions. It's, of course, possible to fully define each date intelligence
expression within the parameter-driven measure but, for manageability
reasons, it's almost always preferable to leverage an existing measure.
This is particularly the recommendation when the required measures
represent common logic, such as month-to-date.

Report filter scopes
A fundamental skill and practice in Power BI report development
is utilizing the report filter scopes and the filter conditions
available to each scope. For example, a report intended for the
European sales team can be filtered at the report level for the
European sales territory group and specific report pages can be
filtered for France, Germany, and the United Kingdom. Reports
can be further customized by implementing filter conditions to
specific visuals, applying more complex filter conditions, and
providing drillthrough report pages to reflect the details of a
unique item, such as a product or a customer.

Unlike the slicer visuals and visual interactions reviewed earlier
in this chapter, report filter scopes are defined outside of the
report canvas. Report filter scopes, therefore, provide report
authors with the option to eliminate or reduce the need for on-
canvas user selections as well as the canvas space associated with
slicer visuals.

In addition to meeting functional requirements and delivering a
simplified user experience, report filter scopes can also benefit
performance. Using the European sales report as an example, the simple
filter conditions of Sales Territory Group = Europe (Report-level filter) and Sales
Territory Country = France (Page-level filter) are efficiently implemented by
the Power BI in-memory engine (import mode) and almost all
DirectQuery data sources. Even if the DAX measures used on the report
page for France are complex, the report filters will contribute to
acceptable or good performance.

With a visual selected on the canvas in the Report View, a filters
pane below the visualizations icon presents the following four
input field wells:

Report-level filters:

The filter conditions defined impact all visuals on
all report pages

Page-level filters:

The filter conditions defined impact all visuals on
the given report page

Report-level filter conditions are respected by the
page-level filters as well

Any Drillthrough filter conditions defined for the
report page are also respected

Visual-level filters:

The filter conditions defined only impact the
specific visual selected

Report and page-level filter conditions are
respected by the visual-level filters as well

Any Drillthrough filter conditions defined for the
report page of the given visual are also respected

Drillthrough filters:

The filter condition, a single value from a column,

impacts all visuals on the given report page.

Report-level filter conditions are respected by the
Drillthrough filters as well.

Any page and visual-level filter conditions defined
for the given report page are respected

Per the prior two chapters, filters are applied to Power BI visuals
via the relationships defined in the dataset (via single or
bidirectional cross-filtering) as well as any filtering logic
embedded in DAX measures. All four of the preceding filters
(Report, Page, Visual, Drillthrough) contribute to the initial filter
context as described in the Measure Evaluation Process of Chapter
10, Developing DAX Measures and Security Roles. Therefore,
just like filters applied on the report canvas (for example,
Slicers), the filter logic of DAX measures can supplement,
remove, or replace these filters conditions. In the event of a
conflict between any report filter and a DAX measure expression
that utilizes the CALCULATE() function, the DAX expression will
supersede or override the report filter.

Report filter conditions
Different types of filter conditions can be defined for the distinct
filter scopes. For example, report and page-level filters are
limited to relatively simple filter conditions that reference
individual columns of a dataset. However, more complex and
powerful conditions such as filtering by the results of a DAX
measure and top N filters can be applied via visual level filters.

The following outline and matrix (filter conditions by filter
scope) summarize the filtering functionality supported:

Basic Filtering:

A single equality condition for a column to a
single value or set of values, such as "is North
America or Europe"

A single inequality condition for a column to a
single value or set of values, such as "is not $25 or
$35"

Advanced Filtering

Several condition rules per data type, such as
"starts with" for text and "is greater than or equal
to" for numbers:

Supports filtering for blank and non-blank
values

Optionally apply multiple conditions per column
via logical operators (and, or)

Relative Date Filtering:

Supports three filter condition rules (is in this, is
in the last, is in the next) for days, weeks, months,
and years

Partial period and complete period filter
conditions can be defined

The same filter condition rules are available to
slicers with date data-type columns

Top N Filtering:

Filter a visual to a defined number of top or
bottom values of a column based on their values
for a measure

For example, the top 10 products based on net
sales can be set as a visual-level filter condition

Filter by Measure:

Filter a visual by applying advanced filtering
conditions to the results of a DAX measure

For example, greater than 45% on the Internet
Net Margin % measure can be set as a visual-level
filter condition

The following table summarizes the preceding filter conditions
available to each of the three primary report filter scopes:

Filter conditions by filter scope

Multiple filter conditions can be defined per report filter scope.
For example, a report-level filter could include two basic filter
conditions and an advanced filter condition. Additionally, the
same column can be used in multiple filter scopes, such as a
report-level filter and a page-level filter on the product
subcategory column. All defined filter conditions are applied to
the visuals within their scope provided that the DAX measures
included in the visuals don't contain filtering logic in conflict
with the report filter conditions. Additionally, the columns and
measures referenced in the filter conditions do not need to be
displayed in the report visuals. For the top N Filtering condition,
the column to be filtered only has to be displayed in the visual
when the filter condition is initially defined.

A good indicator of Power BI development and solution-specific
knowledge is the ability to accurately interpret the filters being
applied to a given visual on a report page. This includes all
Power BI report filters (report-level, page-level, visual-level), any
slicer selections or cross-highlighting, the filter logic of the DAX
measures, the cross-filtering applied via relationships in the data
model, and any filter logic built into the M queries of the dataset.
Complex reports and datasets will utilize all or many of these
different layers in various combinations to ultimately affect the
values displayed in report visuals.

BI teams will want to limit the complexity built into reports, both
for users and the report authors or developers responsible for the
reports. For example, if visual-level filter conditions are applied
to many visuals of a report, the filter condition for each visual
will need to be modified if the requirement(s) of the report
change or the columns or measures used by the filter condition
change. Dataset designers and data warehouse teams can often
implement changes or enhancements to simplify the filter
conditions needed by report authors.

As one example, a filter condition implemented in multiple
reports that specifies several product categories (hardcoded)
could be replaced with a new column on the product dimension
table. The new column would distinguish the group of product
categories that meet this criteria relative to those that don't, and
logic could be built into the data source or retrieval process to
dynamically include additional product categories that later
meet the given criteria.

Drillthrough filters, which are used to define drillthrough report pages
as described in Chapter 12, Applying Custom Visuals, Animation, and
Analytics, are unique in that they can be used to implement basic
filtering conditions at the page level as well as their more common filter
of a single column value. For example, three countries can be selected in
a Drillthrough filter condition and the visuals on this report page will
reflect these three countries. However, a user can only drill to the report
page from the context of a single column value. The source drillthrough

value (for example, Germany), will replace the three countries in the
previous filter condition on the drillthrough page when the drillthrough
action is executed.

Additionally, multiple columns can be used as Drillthrough filters and
the values of both columns from a separate report page are applied to
the drillthrough page when a drillthrough action is executed. If only one
value is present from the source report page, the drillthrough action will
only filter this column and remove any filter defined for the other
Drillthrough filter column. See Chapter 12, Applying Custom Visuals,

Animation, and Analytics for additional details on drillthrough report
pages.

Report and page filters
Report and page level filters are most commonly used to apply
the fundamental filter context for the report. Columns with few
unique values such as Sales Territory Country are good candidates for
report level filters while more granular columns such as Sales
Territory Region are better suited for page level filters.

In the following example, the individual report pages are named
according to the report and page filters applied:

Power BI report pages

In the absence of any custom DAX measures that retrieve the
filter selections applied, users of the report will not see the
report, page, and visual-level filters applied. Therefore, it's
important to assign intuitive names to each report page per the
preceding example and to include a brief title for each report
page via text box.

The following image represents the report and page filters
applied to the Northeast report page of a United States sales report:

Report and page-level filters

Each report page would be filtered for a different sales territory
region except the USA page, which would not contain a page
level filter. The Calendar Year Status column, which was described in
the Date dimension view section of Chapter 8, Connecting to
Sources and Transforming Data with M, restricts all visuals to
only the current and prior calendar year. One or two years of
history is sufficient for many reports given the pace of change in
business environments and strategies. Additionally, the report-
level date filter promotes both query performance and low
maintenance since the dates filtered reflect the latest dataset
refresh.

Report filters are not a long-term substitute for poor data quality or a
suboptimal dataset (data model, retrieval queries). If it's necessary to
implement many filter conditions or complex filtering conditions within
reports to return accurate results, it's very likely that the dataset or the
source system itself should be revised. Similarly, if many filter conditions
or complex filter conditions are needed to retrieve the desired results, it's

likely that the dataset can be enhanced (for example, new column, new
measure) to simplify or eliminate these report filter conditions.

Power BI report authors should communicate to the dataset designer(s)
and BI team whenever complex or convoluted report filters are being
applied. Given limited team resources, it may be sufficient to use report
filters to support rare or uncommon reports. For common reporting
needs, however, it's generally appropriate to build or revise the
necessary logic in the data source or dataset.

Page filter or slicer?
Slicer visuals can serve as an alternative to distinct or dedicated
report pages. With a slicer, a user has the flexibility to select one
or multiple values on the same report page, such as Northeast
and Southwest, without needing to navigate to a dedicated page.
Additionally, by consolidating dedicated report pages, slicers can
simplify report development and management.

Slicers are often the best choice when there's nothing unique to the
different values of the slicer. For example, if all sales regions are always
analyzed by the same measures, dimensions, and visuals it may be
unnecessary to duplicate these pages of visuals. Slicers are also very
helpful or necessary when users regularly need to analyze the data by
the same dimensions or by custom dimensions, such as price and date
ranges.

However, dedicated report pages are valuable for supporting
email subscriptions, data alerts, and dashboard visuals specific
to a particular value such as a sales region. In the following
image from the Power BI service, an email subscription can be
set to any of the report pages within the USA SALES AND
MARGIN report:

Email subscription in Power BI

As one example, the visuals from the Northeast report page
could potentially be pinned to a Northeast dashboard (or other
dashboard) and used in data alerts and notifications for the
Northeast team as well. These region-specific capabilities are
made possible by the distinct report pages of visuals filtered for
the given sales territory region.

Relative date filtering
Relative date filtering is available for date columns at all filter
scopes (report, page, and visual) and for slicer visuals. These
dynamic filter conditions, such as the last 30 days (relative to the
current date) promote both data freshness and query
performance since the minimal amount of history required can
be retrieved. Additionally, relative date filters can often avoid the
need to create custom DAX measures to support specific date
filter conditions.

In the following example, five report pages are dedicated to a
specific relative date filter condition:

Relative date filter conditions per page

A page-level filter is used for each report page with the following
conditions, per the following example:

Relative date filter condition

As of 12/14/2017, the five report pages are filtered to the
following date ranges with the Include today option enabled:

Is in the last 12 months 12/15/2016 through 12/14/2017

Is in the last 12 weeks 9/22/2017 through 12/14/2017

Is in this month 12/1/2017 through 12/31/2017

Is in the next 12 weeks 12/14/2017 through 3/7/2018

Is In the next 12 months 12/14/2017 through 12/13/2018

A report design such as this would make it simple for users to
analyze immediate, near-term, and longer-term trends and
issues.

Three types of relative date filter conditions can be set—is in the
last, in this, and in the next. Each of these filter conditions
supports day, week, month, and year intervals. For the in the last
and in the next filter conditions, calendar week, month, and year
conditions can also be specified. These conditions represent full
or completed calendar periods only. For example, as of
November 28th, 2017, the last one-calendar month and last one-
calendar year would include all dates of October 2017 and all
dates of 2016, respectively. The week of 11/19/2017 through
11/25/2017 would represent the last one-calendar week.

Visualization formatting
A final step in report development is configuring the formatting
options for each visual. Several of these options, such as data
labels, background colors, borders, and title are common to all
visuals and are often essential to aid comprehension. Several
other formatting options, such as fill point for scatter charts, are
exclusive to particular visuals and report authors are well served
to be familiar with these features.

In addition to giving reports a professional appearance, features
such as tooltips can be used to provide visuals with additional or
supporting context. Furthermore, formatting features can be
used to implement conditional logic to dynamically drive the
color of data points by their values.

Visual-level formatting
Formatting visuals primarily refer to modifying the format
properties of a visual via the format cards associated with that
visual. Additionally, report authors can use the options exposed
on the Format tab in the Report View of Power BI Desktop to
control the alignment, distribution, and Z-position of visuals.

Whenever a visual is selected on the canvas, the Format pane
presents a number of formatting cards specific to the visual. In
the following image, the 10 formatting cards currently available
to the Power BI column chart visual are displayed:

Visual formatting cards

Expanding and enriching the available formatting options across
all visuals has been a priority for the Power BI team. As an
example, for the column chart, the X-Axis card includes a
concatenate labels property that can be useful for maintaining
context while navigating through the levels of a hierarchy.
Additionally, the Data labels card contains options for
positioning labels inside the base of the column and changing
the scale (for example, thousands, millions) and decimal places
of the values displayed.

For some visuals, such as column, line, and scatter charts, the Analytics

pane (next to the Format pane) provides additional formatting options.
These options are reviewed in the following chapter.

Line and column charts
Line, column, and bar charts are the most common chart
visualization types given their advantages in visual perception, as
explained in the Visualization best practices section. Power BI
includes clustered and stacked versions of column and bar charts
in addition to two combination charts that display both a line
and either a clustered or stacked column.

The ribbon chart visualization was added to Power BI Desktop in
September 2017 and represents a variation of the stacked
column chart. Unlike the stacked column chart, the ribbon chart
sorts the category items within each column based on their
values and connects the items across columns with a ribbon.

In the following example of a ribbon chart, four product
subcategories are displayed across months by their net sales:

Ribbon chart

Helmets subcategory overtook the Tires and Tubes category in
September 2017 to become the top-selling product subcategory
in the visual. Per the tooltip included in the preceding image,
hovering over the curved ribbon connecting the months on the
X-axis displays the values for each month, the variance and
percentage change between the months, and the change in rank
for the given category (for example, from first to second for Tires
and Tubes). Insights into the rankings of categories and their
changes across periods wouldn't be as easily identified in a
standard stacked column chart.

The ribbons formatting card allows for spacing, transparency, and a
border to further aid comprehension. In the example visual, the ribbon
border is enabled, the transparency of the ribbon is set to 50, and the
ribbon spacing is set to 5. Currently, unlike the stacked column chart, the

Ribbon chart doesn't include a Y-axis to identify the total value of each
column. Additionally, the individual ribbons are currently distinguished
by color. Formatting options available to other visuals, such as
customizing each series or the legend using alternative styles and
markers, are not yet supported.

Tooltips
Chart and map visuals include a Tooltips field well in the Fields
pane to allow report authors to define additional measures that
will display when the user hovers over the items in the visual.
These tooltip values will reflect the same filter context of the data
labels for the visual and thus provide the user with additional
context. In the following example, four measures have been
added to the Tooltips field well for a column chart:

Additional measures displayed as tooltips

By hovering over the column for online net sales in August of
2017, the tooltip is displayed, which includes both the Internet Net
Sales measure used for the chart as well as the four tooltip

measures.

In this example, the tooltip measures indicate that Internet Net
Sales was below the plan for this month by $72,970 in addition to
other potentially useful metrics (Intenet Sales Per Customer, Internet Net
Margin %). In the absence of the tooltips, the user may have to
search for other reports or visuals to find this information or
may miss important insights related to the visual.

Tooltips are a great way to enhance the analytical value of a
visual without adding complexity or clutter. Additionally, given
the features of the DAX query engine, such as measure fusion,
the additional measures displayed as tooltips will generally not
negatively impact performance. For example, the internet sales
and margin measures are based on the same fact table.
Therefore, the necessary source columns for both measures will
be accessed by one storage engine query via measure fusion.

Report page tooltips
The standard tooltips described in the previous section may be
sufficient for most reporting scenarios. However, Power BI
Desktop also provides report page tooltips that allow report
authors to display a custom page of report visuals as an
alternative to the default tooltips. The following steps can be
used to configure a report page tooltip:

1. Add a new blank report page to a report.
2. On the Format pane for the report page, enable the

Tooltip property under the Page Information formatting
card.

3. Also on the Format pane, specify a Tooltip page size per
the following image:

Report page tooltip

4. On the Tooltip page from step 3, set the Page View to
Actual Size via the Page View icon on the View tab.

5. From the Fields pane of the Tooltip page, drag a measure
or multiple measures to the tooltip Fields field well:

1. Columns can also be specified as tooltip fields
(for example, Product Name)

6. Create report visuals on the tooltip report page that relate

to the tooltip field well measure(s) or column(s):

1. For example, if the tooltip page will support a
sales measure, consider building visuals that
display sales versus plan, budget, or sales growth
measures

2. Given the limited size of the Tooltip report page,
KPI and card visuals are recommended

By default, other visuals in the report that utilize the measure(s)
or column(s) specified as tooltip fields in step 5 will display the
tooltip report page when the user hovers over the items of the
visual.

The Tooltip Page Size from step 3 is not required for utilizing tooltip
report pages. However, this property makes the purpose of the page
clear to the other report authors and has been provided by the Power BI
team as at a good starting point for most report page tooltips. Likewise,
viewing the report page tooltip in actual size per step 4 is technically not
required but is very helpful in designing these pages.

Alternatively, a tooltip formatting card is available at the bottom
of the Format pane for charts and map visuals. This formatting
card can be used to specify a particular tooltip report page for the
given visual or to disable tooltip report pages. If report page
tooltips have been disabled for a visual, the visual will display the
default tooltips as described in the previous section.

Column and line chart
conditional formatting
Column and line charts are two of the most common visuals in
reports given their flexibility and advantages in visualizing
comparisons and trends. However, these classic visuals don't
have to be static or simple—report authors can embed custom
rules to dynamically drive formatting properties based on source
data. Similar to tooltips, conditional formatting techniques help
users more quickly derive insights from visuals without the
added complexity of more data points or additional visuals.

Column chart conditional
formatting
Conditional formatting can be applied to column charts by
specifying a measure, such as product margin in the color
saturation field well. By default, the value of this measure will
drive the saturation of color for each column in the visual. To
take further control of the formatting or to apply a conditional
formatting rule, the Diverging formatting options under the Data
colors card can be modified.

In the following example of a column chart, a product margin
percentage measure is used as the Color saturation field (above
tooltips) and threshold values have been entered to define the
formatting rule:

Diverging Data colors formatting

With the Diverging property enabled this rule associates three
colors (red, yellow, and green) with Minimum, Center, and
Maximum values of -6.5%,0%, and 6.5%, respectively. This rule
will make it easy for users to distinguish the columns, such as
fiscal periods or product categories, associated with low, average,
and high product margins.

By disabling the Diverging property, a rule can be specified for only a
minimum and a maximum value. This can be useful to change the color
of a column only when a threshold is reached. In other words, the chart
will at most display two distinct colors with one of the colors (for
example, red) flagging the exceptions. To implement this rule, simply
specify the same value for both minimum and maximum inputs and then
associate different colors for each.

Line chart conditional
formatting
Conditional formatting can be applied to line charts by applying
distinct colors to separate DAX measures. In the following
example, a DAX measure is created that only returns the sales
per order value when its value is below $600:

Internet Net Sales Per Order Below $600 =
IF([Internet Net Sales Per Order] < 600,[Internet Net Sales Per Order],BLANK())

Using this measure and the Internet Net Sales Per Order measure on
the same line chart allows for separate colors to be applied:

Contrasting colors for line chart measures

For this example, a default light green can be used for the Internet
Net Sales Per Order measure and red can be applied for the below
$600 measure. Additionally, the below $600 line can be
formatted with a slightly larger stroke width and a dotted line
style via the customize series formatting options to better
contrast these values.

The line chart will appear as a single line that changes colors and
styles when it goes below $600:

Conditionally-formatted line chart

The stroke width, join type, line style, and marker shape
formatting properties provide a wide range of options for
contrasting lines beyond their colors. These additional properties
are recommended to aid general comprehension and to support
users who cannot easily distinguish colors.

Table and matrix
Per the Choosing the visual section earlier in this chapter, table
and matrix visuals are good for looking up individual values and
for displaying precise values. For example, all seven digits of the
value $7,847,292 would be displayed on a table or matrix visual
but this same value would likely need to be rounded to $7.8M in
a column or line chart to maintain readability.

Table and matrix visuals support the same Display units and
Value decimal places formatting properties as other visuals. In
the following example from a table visual, both measures have
been formatted to display their values in terms of millions with
one decimal place:

Display Units and Decimal Places for Table and Matrix Visuals

Per the preceding example, these properties are available within
the Field formatting card of the Format pane. Display unit
options range from the thousands (K) to the trillions (T). By

default, the Display units property is set to None for table and
matrix visuals and thus displays the full value.

Prior to the availability of the Display units and Value decimal
places properties, it was necessary to use the FORMAT() function in
separate DAX measures to display custom formats in table or
matrix visuals. The following two measures apply a custom
rounded currency format to the results of the Internet Net Sales
measure:

Internet Net Sales (Format Thousands) = FORMAT([Internet Net Sales],"$0,.0K")

Internet Net Sales (Format Millions) = FORMAT([Internet Net Sales],"$0,,.0M")

Both measures use the FORMAT() function to convert the input value (the
Internet Net Sales measure) to a string in a custom, rounded format.
Specifically, the comma or commas immediately to the left of the decimal
are used to divide the value by 1,000 and round as necessary. The zero to
the right of the decimal displays a digit or a zero. For example, the
$541,613 value would be displayed as $541.6K and $0.5M by the format
thousands and format millions of measures, respectively.

Table and matrix conditional
formatting
Default and custom conditional formatting rules can be applied
to table and matrix visuals to make it easier to identify
exceptions and outlier values. Power BI currently supports
background color scales, font color scales, and data bar
conditional formatting for table and matrix visuals. To apply
conditional formatting to a table or matrix, click the drop-down
arrow next to the field name of the measure (for example, Internet
Net Sales) in the Values field well of the Visualizations pane. A
conditional formatting menu item will appear with an arrow
providing access to the three types of conditional formatting.

In the following table, data bar conditional formatting has been
applied to four measures related to internet sales:

Data bars conditional formatting

Although the visual has been filtered to the top 10 customer state
provinces for France, it would be difficult or time-consuming to
gain insight from the 40 distinct data values. The length of the
data bars helps to call out high or low values and alternative
colors can be applied per measure.

The direction of data bars is particularly helpful in distinguishing
negative from positive values per the Internet Net Sales (YOY YTD %) measure in
the preceding example visual. For large table and matrix visuals with
many values, or when the relative differences between values are more
important than the individual values themselves, the option to show only
the data bar can be very useful.

Custom conditional formatting rules can be applied to the
background and font color scales of table and matrix visual cells
similar to Microsoft Excel. In the following example, the Color by
rules option is enabled and Rules are defined to format the cells
of a measure as green if over 25%, yellow when between -25%
and 25%, and red if the value is less than -25%:

Custom conditional formatting rules

The conditional formatting rules are evaluated from the bottom
to the top. Therefore, if a cell meets the condition of multiple
rules, the lower rule will be applied. The order of rules can be
adjusted via the up and down arrows to the right of the color
icons.

Multiple conditional formatting types can be applied against the
same measure. For example, the same three conditional rules
used for the background color scales in the preceding image
could also be implemented as font color scale rules. However,
the font colors specified for each rule (for example, white) could
be chosen to contrast with the conditional background colors
(for example, red) to further help call attention to the value.

As of the November 2017 release of Power BI Desktop, only hardcoded
values can be specified in the custom formatting rules. In a future
release, DAX measures will likely be supported as inputs to conditional

formatting rules. This functionality would make it easier to implement
more complex rules, such as greater than the prior year-to-date sales
value.

Values as rows
An additional and highly requested enhancement to matrix
visuals is the ability to show measures as rows. The following
matrix visual breaks out six DAX measures by a date hierarchy
across the columns:

Values on rows in matrix visual

Displaying multiple measures as rows, particularly with one or
multiple date dimension fields across the columns, is a very
common layout for Excel pivot table reports. To enable this
feature in Power BI, simply enable the Show on rows feature
within the values formatting card of the matrix visual.

Scatter charts
Scatter charts are very effective at explaining the relationship or
correlation between items against two variables. Optionally, a
third variable can be used to drive the size of the data points and
thereby convert the visual to a bubble chart.

In the following example, three countries from the Sales Territory
Country column are used as the details input to a scatter chart:

Scatter chart

To provide additional detail, three product subcategories are
included in the legend input, such that nine total points (3 X 3)
are plotted on the chart. The scatter chart naturally calls out the
differences among the items based on their X Position (Reseller
Net Sales) and Y Position (Internet Net Sales). Moreover, to make the
visual even easier to interpret, the marker shapes have been
customized for each product subcategory (for example, triangles,
diamonds, squares) and the size of the shapes have been
increased to 40%.

By default, Power BI applies different colors to the items in the legend. If
the legend is not used, the report author can customize the colors of the
individual items from the details input column. Although color can be
effective for differentiating values, customized marker shapes, such as
this example, are helpful for users with visual disabilities.

Map visuals
As of the November 2017 release, Power BI currently provides
four map visuals including the bubble map, filled map, shape
map (in preview), and the ArcGIS Map. The bubble map plots
location points over a world map and varies the size of the
bubbles based on a value. The points on bubble maps can also be
broken out across a dimension to provide additional context. The
filled map and shape map visuals are forms of heat maps that
use color and color intensity to distinguish specific areas of a
map by a value, such as postal codes by population.

The ArcGIS Map visual is the most powerful of the available geospatial
visualizations and several custom map visuals are available in the Office
Store including the Globe Map and the Flow Map. See Chapter 12, Applying
Custom Visuals, Animation, and Analytics for details on the ArcGIS Map
visual and using custom visuals. The Shape Map visual is currently still
in preview and thus should only be used for testing purposes. The
following URL provides documentation on the Shape Map http://bit.ly/2zS2af
U.

Per the Data category section in Chapter 9, Designing Import and
DirectQuery Data Models, it's important to assign geographic
data categories to columns. This information aids the map
visuals in plotting the correct location when a value is associated
with multiple locations (ambiguous locations). The following
image from the Data view highlights the city category for a
column:

http://bit.ly/2zS2afU

Data category per column
Data categories can be assigned to columns from the modeling tab in
Data view or the Report View. For DirectQuery datasets, these metadata
properties can only be assigned from the Report View. Report authors
should engage the dataset designer or BI team responsible for a dataset
if data categories have not been assigned to columns needed for report
development.

Additionally, for bubble and filled map visuals, hierarchies can
be added to the location field well to avoid ambiguous results.
For example, by adding the following hierarchy to the Location
field well, the map visuals will only use the locations associated
with their parent values, such as only the states of Australia.

Geographic hierarchies in map visuals
For greater precision and performance with map visuals (excluding the
Shape Map), latitude and longitude input field wells are available as
alternative inputs to Location.

Bubble map
Bubble maps are particularly useful when embedding an
additional dimension column or category to the legend input.
When a geographic boundary column, such as country or postal
code, is used as the location input, the added dimension converts
the bubbles to pie charts of varying sizes. Larger pie charts
reflect the measure used for the Size input field and the
components of each pie are color-coded to a value from the
legend column providing even greater context.

The following bubble map example uses the postal code as the
location input, the Internet Net Sales measure as the size input, and
the Customer History Segment column as the legend input:

Map visual

For this map, the Grayscale theme is applied from the Map styles
formatting card and the auto-zoom property under the Map
controls card has been disabled. These two settings, along with a
bubble size of 15% via the Bubbles card, makes it easy for users
to analyze the data associated with postal codes north of Los
Angeles.

The bubble map also includes a color saturation input to help distinguish
bubbles beyond their relative sizes. This input, however, can only be used
when the legend field well is not used.

See the Customer history column section of Chapter 8, Connecting to Sources

and Transforming Data with M for details on creating a history segment
column within an M query.

Filled map
A filled map visual includes several of the same formatting
properties of a bubble map but utilizes color as its primary
means to contrast the locations. In the following filled map, a
diverging color scheme has been applied via the Data colors
formatting card to highlight individual states based on their
online net sales:

Filled map visual with diverging colors

Exactly like the color scheme described in the column and line
chart conditional formatting section, three distinct numeric
values and colors are assigned to the Minimum, Center, and
Maximum properties. For this visual, the values of $1M, $2M,
and $3M are associated with red, yellow, and green; this causes
the South Australia state to appear as red while the New South
Wales states are green.

Additionally, like the previous bubble map example, a grayscale
map-style theme has been applied and the auto-zoom property
has been disabled. Other map themes, such as dark, light, road,
and aerial, are also available for filled and bubble maps. These
alternative themes, particularly when contrasted with the bright
or rich colors of a filled map, can significantly add to the
aesthetic appeal of a report.

Per the drill-up/down icons above the visual, a hierarchy of
geographical columns (Country, State, City) has been added to the location
field well. These additional columns help the Bing Maps API to display
the correct location, such as only Victoria in Australia. To ensure that
Bing Maps respects the parent column (for example, Country) when
plotting child locations (for example, States/Provinces), the user can
enable the drill mode via the drill-down button in the top-right corner of
the visual. With drill mode enabled, the user can click the specific parent
value on the map, such as the United States, and Bing will plot states by
only searching for states within the United States.

Alternatively, with drill mode not enabled, the user can click the expand
all down one level icon in the top-left of the visual. From the initial state
of the parent value (country), this will also plot the states within each
parent value. The other drill option at the top-left of the visual, the go to
the next level drill, only plots the child values without the context of the
parent value.

Mobile-optimized reports
A critical use case for many reports is mobile access via the
Power BI mobile applications for iOS, Android, and Windows
platforms. A report that is perfectly designed for a laptop or PC
monitor may be difficult to use on a tablet or mobile device. To
account for multiple form factors, including both small and
largescreen phones, report authors can create mobile-optimized
reports via the Phone Layout view in Power BI Desktop.

In the following example, the Phone Layout of a report page in
Power BI Desktop is accessed via the View tab:

Phone Layout

From the Phone Layout view, the visuals created and formatted
for the report page can be arranged and sized on a mobile layout
grid. In the following example, the two KPI and card visuals
included in the preceding image from the Report View, as well as
a line chart, are arranged on the phone canvas:

Phone Layout
Single-number visuals, such as cards and KPIs, are natural candidates
for mobile-optimized layouts. More complex and data-intensive visuals,
such as scatter charts and combination charts, are generally less
effective choices for mobile layouts. Given the one-to-one relationship
between report pages and the phone layout, one design option is to
create a dedicated report page with the visuals needed for the phone
layout.

The size and position of visuals can be adjusted by dragging
visual icons along the phone layout grid. A mobile-optimized
layout can be defined for each report page or any number of the
pages contained in a report. The formatting and filter context of
report visuals is always aligned between the Phone Layout and
the default Report View. For example, to change the format or
filter for a visual accessed via the Phone Layout, the visual can be
modified from the standard Desktop Layout view.

When a report page is accessed from the Power BI mobile
application, the Phone Layout created in Power BI Desktop will
be rendered by default in the phone report mode. If a phone-
optimized layout doesn't exist, the report opens in landscape
view.

Power BI dashboards can also be optimized for mobile devices. The
mobile layout for dashboards is implemented in the Power BI service and
is reviewed in Chapter 13, Designing Power BI Dashboards and
Architectures.

Responsive visuals
Certain Power BI visuals, such as line, column, and scatter
charts, can be configured to dynamically display the maximum
amount of data possible given the available screen size. For
example, a responsive column chart visual will display fewer
gridlines and columns as the height and width properties of the
visual are reduced. This setting can benefit the mobile layouts for
both reports and dashboards as visuals will retain their most
valuable elements as they're resized.

To enable the responsive feature, select the visual on the report
page in Desktop Layout and enable the Responsive (Preview)
property under the General formatting card, per the following
example:

Responsive visuals property

The Responsive (Preview) formatting property, currently in
preview, is disabled by default and can only be enabled per

report visual.

Report design summary
As a data visualization and analytics platform, Power BI provides
a vast array of features and functionality for report authors to
develop compelling content to help users derive insights. Given
the volume of features and possible formatting configurations,
report authors and BI teams will want to follow a set of report
planning and design practices to ensure consistently, quality
report content is delivered to stakeholders. These practices
include report planning in terms of scope, users and use cases,
data visualization practices, and the selection of visuals.

The Report planning, Visualization best practices, and Choosing
the visual sections earlier in this chapter provided details on
many of the recommended practices to develop effective and
sustainable report content. At a standard summary-level review
of a report and the implementation of these practices, perhaps at
the conclusion of a development phase and prior to deployment,
the following list of questions can be asked:

1. Does the report have a clear scope and use case?

1. The report addresses specific business questions
of value to specific users or teams that will
consume the report

2. The relationship and distinction between this
report and other reports or dashboards that the
users will have access to is understood

3. The pages of the report naturally relate to one
another to address the same or closely-related
business questions, perhaps at alternative levels
of detail

2. Have standard visualization practices been followed?

1. The visuals have proper spacing, alignment, and
symmetry

2. The reports use colors selectively and there are
clear titles on report pages and visuals

3. The report is intuitive and not cluttered with
unnecessary details

3. Have the right visuals been chosen to represent the data?

1. Tables and matrices were used when cross-
referencing or looking up individual values was
necessary

2. The type of data relationship to represent (for
example, comparison) and the relative advantages
of the different visuals, such as line charts for the
trends of a value, drove the visual choice

4. Does the report enable the user to easily apply filters and
explore the data?

1. Slicer visuals for common or important columns
have been utilized and are easily accessible to
users

2. The filtering and cross-highlighting interactions
between the visuals on the report pages have been
considered and configured appropriately

3. Hierarchies of columns have been built into
certain visuals to allow a simple drill-up and drill-
down experience

5. Does the report aid the user in identifying insights or
exceptions?

1. Dynamic formatting, such as with KPI visuals and
conditional formatting rules and techniques, has
been applied

2. Tooltips have been added to report visuals to
provide the user with additional context hovering
over the visual such as the columns in a column
chart or the data points in a line chart.

6. Have simple and sustainable filter conditions been
applied at the appropriate scope?

1. Report and page-level filter scopes have been

applied to minimize the resources required by the
queries generated by the report:

1. Visual-level filters are only used when the
visual needs to reflect an alternative filter
context of the report and page-level filter
scopes

2. Report filter conditions are not being used to
address issues with data quality or the source
dataset:

1. Efforts have been made (or will be made)
to enhance the source dataset to better
support the report

3. Filter conditions on the date dimension are
dynamic and sustainable (for example, Current Year
and Prior Year) rather than hardcoded values (for
example, 2018 and 2017)

Summary
In this chapter, we walked through the fundamental components
of Power BI report design, including visualization best practices,
Live connections to Power BI datasets, and the filter scopes
available in Power BI Desktop. We reviewed top report
development techniques and examples, such as conditional
formatting, tooltips, and user parameters. Furthermore, we
looked at powerful self-service and mobile report features,
including slicers, visual interactions, and mobile-optimized
reports.

The following chapter is also dedicated to the report
development but goes well beyond the fundamental design
concepts and features introduced in this chapter. That chapter
will leverage the latest, most powerful report authoring features
of Power BI, including drillthrough report pages, bookmarks, the
analytics pane, and custom visuals.

Applying Custom Visuals,
Animation, and Analytics
The previous chapter's emphasis on report planning,
visualization best practices, and standard visuals in Power BI
Desktop serve as a foundation for effective Power BI report
development. However, more advanced visualization and report
development features, such as the Analytics pane, Bookmarks,
and drillthrough report pages are available to create even more
compelling and insightful content. Additionally, a vast array of
custom visuals created by Microsoft and a community of third
parties can be leveraged to address specific use cases or provide
extended functionality.

This chapter reviews many of the latest and most powerful
analytical and visualization features in Power BI. This includes
the design and utilization of drillthrough report pages, the
ArcGIS Map for Power BI, and the use of Bookmarks and related
features to easily store and share the insights contained in
reports. Additionally, several of the more powerful and popular
custom visuals are described including the Power KPI by
Microsoft and the Impact Bubble Chart.

In this chapter, we will review the following topics:

Drillthrough report pages

Bookmarks

Custom report navigation

The Analytics Pane

Quick Insights

Trend and prediction lines

Custom visuals

ArcGIS Map visual for Power BI

Waterfall chart

Microsoft Power KPI visual

Animation and storytelling visuals

Drillthrough report pages
Drillthrough report pages enable report authors to anticipate the
needs of users to view the details associated with a particular
item such as a product or customer. Since it's unknown which
specific item the user will need to analyze during a self-service
session in Power BI, generic drillthrough report pages can be
designed that highlight the most relevant dimensions and
metrics such as the product list price or the first purchase date of
the customer. Drillthrough report pages update to reflect the
filter context of the user's selection (for example, Product ABC) on a
separate report page.

Drillthrough was one of the most requested features in 2017 and its
availability closes a gap with other Microsoft BI products. In paginated
SQL Server Reporting Services (SSRS) reports, drillthrough actions
can be defined in a source report to open a target report based on the
parameters of the source report. The Drillthrough filters defined in
Power BI report pages serve the same purpose as the parameters defined
in the target reports of SSRS drillthrough actions.

In the following example, a report page has been designed with a
drillthrough filter set to the Product Name column:

Drillthrough report page

The drillthrough report page provides a mix of high-level sales
and margin metrics as well as seven product dimension columns
in the Product Details table at the bottom. With the drillthrough
report page configured, when the Product Name column is exposed
on a separate page within the report, the user will have a right-
click option to drill to this page as per the following image:

Drillthrough source page
Only the column or columns specified as Drillthrough filters can be used
as drill columns. For example, even if the product's Alternate key column
has a 1-to-1 relationship with the Product Name column, the drillthrough
option will not be available to visuals based on the product alternate key
column unless it's also been specified as a drillthrough filter like the
Product Name column. Therefore, if some report visuals use Product Name and
others use the product alternate key, both columns can be configured as
Drillthrough filters on the drillthrough report page to support both
scenarios.

In the preceding example, the user has drilled down through the
four levels of the product hierarchy created in Chapter 9, Designing
Import and DirectQuery Data Models (Product Category Group, Product
Category, Product Subcategory, Product Name) to display a bar chart by the
Product Name column. The same right-click drillthrough option is
exposed via table, matrix, and other chart visuals including the
scatter chart and the stacked column and bar charts.

The Bottom level column of a hierarchy such as the preceding Product
Name example is often a good candidate to support with a
drillthrough report page. For example, a common analysis
pattern is to apply a few slicer selections and then to drill down
through the hierarchy levels built into chart and matrix visuals.
Each level of the hierarchy provides supporting context for its
parent value, but ultimately the report user will want to
investigate a specific value (for example, Customer 123) or a specific

combination of values (Customer 123 and Calendar Year 2018).

Custom labels and the back
button
Two of the most important components of the drillthrough
report page include the Custom Product Name and back button image at
the top of the report page. The Product Name message at the top of
the page uses the following DAX Measure expression:

Selected Product Name =
VAR ProdName = SELECTEDVALUE('Product'[Product Name], "Multiple Product Names")
RETURN "Product Name: " & ProdName

The SELECTEDVALUE() function returns either the single value
currently selected for a given column or an alternative
expression if multiple values have been selected. For drillthrough
report pages, it's a given that the drill column will only have a
single value as each drillthrough column is limited to a single value.
To provide a dynamic label or title to the page, the DAX variable
containing the Product Name expressions is concatenated with a text
string. In this example, the Selected Product Name measure is
displayed in a similar card visual.

The custom back button image was added to the report via the
insert image command on the Home tab of the Report view.
Once positioned in the top left of the page, selecting the image
exposes the format image formatting cards. As per the following
image, the Link formatting card is enabled and the Type is set to
Back:

Back button image

The Power BI Desktop adds a back button arrow shape by
default when a drillthrough page is created, but this shape is less
intuitive for users than the custom image. With the back button
configured, Ctrl + click is used to return to the source page in
Power BI Desktop. Only a single click is needed to use the back
button in the Power BI service.

The single row Product Details table at the bottom of the drillthrough report
page has been filtered to only display the current, active values of the
product. As described in the Slowly changing dimensions section of Chapter
8, Connecting to Sources and Transforming Data with M, the Products table
contains multiple rows per product, representing different points in
time. To ensure that only one row is displayed by the table visual, a
visual level filter was applied, setting the Product Status column equal to
Current. Alternatively, the visual level filter condition could specify that the
Product End Date column is blank via the advanced filter condition type.

Multi-column drillthrough
In many scenarios, a more specific filter context is needed for
drillthrough report pages to resolve analyses. For example, the
user may be interested in one specific year for a given Product
Subcategory. To support these needs, multiple columns can be
added as drillthrough page filters. When one or both columns
are exposed in a report visual on a separate page, the
drillthrough right-click option can be used to apply multiple
filter selections to the drillthrough page.

In the following stacked column chart of Internet Sales by year and
Product Subcategory, right-clicking on the Road Bikes column for 2015
($4.2M) exposes the Drillthrough option to the Subcategory-Year
Details drillthrough report page:

Drillthrough by multiple columns

The Subcategory-Year Details report page contains Drillthrough
filters for both the Calendar Year and the Product Subcategory columns.
Report visuals which only expose one of these two columns can
still drill to this multi-column drillthrough report page. In this
scenario, no filter would be applied to the column not contained
in the source visual.

Executing the drillthrough action from the preceding chart
results in the drillthrough report page filtered for both column
values:

Multi-column drillthrough report page

The drillthrough report page (Subcategory-Year Details) in this
scenario would be designed to display the values of the two
drillthrough columns and provide supporting analysis for this
given filter context. In the following example, the $4.2M of Internet
Net Sales from the source page is identified in a card visual and
also visualized by the calendar months of 2015 in a stacked
column chart to break out the product models for the Road Bikes
subcategory:

Multi-column drillthrough report page

In the preceding drillthrough report example, the user obtains
details on both Internet Net Sales and Reseller Net Sales for the given
year and Product category. Visuals which utilize measures from
any fact table (for example, Sales Plan) with a cross-filtering
relationship to the drillthrough column tables can be added to
the drillthrough report page to provide additional context.

In addition to stacked column charts, matrix visuals are also a
common choice for initiating a drillthrough action based on two
columns. For example, the Calendar Year column could be the
columns input and the Product Subcategory could be the rows input.
Additionally, a pie chart with the two columns used in the legend
and detailed input fields can also be used to drillthrough based
on two columns.

Bookmarks
Bookmarks enable report authors to save specific states of
reports for easy access and sharing with others. For example, an
important or common view of a report page which involves filter
conditions across several columns can be saved as a bookmark
for easy access at a later time. By persisting the exact state of a
report page, including any cross-highlighting, drilling, and
sorting, each bookmark can serve as a distinct report page, thus
amplifying the scope and usability of Power BI reports.

By default, bookmarks represent the entire state of a report page,
including all filter selections and the properties of the visuals (for
example, hidden or not). However, bookmarks can also
optionally be associated with only a few visuals on a report page.
Additionally, report authors can choose to avoid persisting any
filter or slicer selections and rather only save visual properties on
the page. These granular controls, along with the Selections pane
and linking support from images and shapes, enable report
authors to create rich and compelling user experiences.

In the following example, 12 Bookmarks have been created for a
European sales report:

Bookmarks Pane

Bookmarks are created via the Add icon at the top of the
Bookmarks Pane. With the Bookmarks Pane visible via the View
tab in Report view, a report author can develop a report page
with the filters and visual layout required and then click the Add
icon to save these settings as a bookmark. As per the preceding
image, the ellipsis at the right of the bookmark's name can be
used to update Bookmarks to reflect the current state and to
rename and delete visuals. Additionally, the second and third
groups of bookmark options allow report authors to customize
what is stored by the bookmark.

The Data category includes report, page, and visual level filters, slicer
selections, the drill location if a visual has been drilled into, any cross-
highlighting of other visuals, and any sort orders applied to visuals. The
Display category includes whether a visual is hidden or not, the Spotlight

property, focus mode, and the Show Data view. By disabling the Data
category for a bookmark, a user's selections on slicers or other visuals
will not be overridden when the bookmark is accessed.

In the preceding report, three Bookmarks have been applied for
each of four report pages—Europe, United Kingdom, Germany, and France.
For example, selecting the France: Bikes Only bookmark from
the Bookmarks Pane displays the France report page filtered for
both France and Bikes, as per the following image:

Bookmarks and Filters Pane

Switching to the France: Excluding Bikes book simply changes
the filter condition on the Product Category Group column to Non-Bikes
and selecting the France: Summary bookmark removes the Product
Category Group filter. By using Page level filters within Bookmarks, a
single report page (France) can more easily be re-used to address
additional business questions. Additionally, Bookmarks and off-
canvas filters avoid the need for users to interact with slicer
visuals and also eliminates the canvas space that slicer visuals
would otherwise consume.

Selection pane and the
Spotlight property
The Selection Pane and the Spotlight property for visuals are
both closely related features to Bookmarks. For example, with
the Selection Pane exposed via the View tab of the Report view,
certain textboxes on a report page can be hidden while a specific
text box associated with a bookmark is left visible.

In the following example, three textboxes have been created for
the Europe report page, but only one of the three textboxes is
visible for each of the three Europe Bookmarks:

Selection Pane and Bookmarks Pane
The Selection Pane can be accessed via the View tab in Report view and
displays all objects of the selected report page including visuals, images,
and shapes. Although most commonly used with Bookmarks, the
Selection Pane is also helpful when developing report pages that contain
many visuals and objects. Selecting an object from the Selection Pane
provides access to the properties associated with that object (for
example, field inputs, formatting cards) as though the object was
selected on the report canvas.

The icons next to the objects can be toggled between visible (eye
symbol) and hidden (dash symbol). In the preceding example,
only the text box containing the title Europe Sales and Margin: Summary is
visible for the Europe: Summary bookmark. The other two

textboxes on the Europe report page contain a title
corresponding to the other two Europe Bookmarks (Europe:
Bikes Only, Europe: Excluding Bikes). Like the Europe:
Summary bookmark, only the text box containing the title
associated with the given bookmark is visible for these two other
Bookmarks.

The Spotlight property, accessed via the ellipsis in the top-right
corner of each visual, draws attention to the specific visual by
making all other visuals on the report page fade into the
background.

Spotlight is particularly useful in supporting presentations via
Bookmarks. For example, in the View mode described later in this
section, one bookmark could display a report page of visuals normally
and the following bookmark could highlight a single visual to call out a
specific finding or an important trend or result. Spotlight may also be
helpful for presenters to explain more complex visuals with multiple
metrics and/or dimension columns.

As an alternative to Spotlight, Focus mode can also be saved as a
bookmark. Focus mode can be applied via the diagonal arrow icon in the
top right corner of chart visuals and fills the entire report canvas with
the single visual.

In the following example, the Spotlight property has been
enabled for a scatter chart on the Europe report page:

Report page with Spotlight enabled on the scatter chart

In the preceding report page, four other visuals (three cards and
a bar chart) are still visible, but the scatter chart is emphasized
via the Spotlight property. With Spotlight enabled, the report
author could add a bookmark with an intuitive name (for
example, Europe Summary: Customer Segment and Country Scatter) to save this
specific view. Referencing this bookmark in a meeting or
presentation makes it easier to explain the meaning and insights
of the scatter chart.

Custom report navigation
Bookmarks can also be assigned as links to shapes and images.
With multiple Bookmarks created across multiple report pages, a
visual table of contents can be created to aid the user's
navigation of a report. Rather than opening and browsing the
Bookmarks Pane, users can simply click images or shapes
associated with specific Bookmarks, and a back button can be
used to return to the table of contents page.

In the following example, nine images have been positioned
within a rectangle shape and linked to Bookmarks in the report:

Custom navigation to Bookmarks
The rectangle shape and three line shapes are used to form the matrix of
icons. Shapes and images can be added from the insert group of icons on
the Home tab of Report view. With a shape or image selected, the Format
tab appears, allowing the author to align and distribute the objects as
well as move certain objects forward or backward on the canvas.
Grouping similar objects within shapes is a common practice to improve
usability.

With an image or a shape selected, a Link formatting card can be

enabled to choose between a Bookmark link and a Back link. In
the following example, the France flag image positioned in the
top right of the table of contents is linked to the France:
Excluding Bikes bookmark:

Link formatting card for images and shapes

In this report, the back button image introduced in the
Drillthrough report pages section earlier in this chapter is also
inserted in each page of the report. Rather than return to the
source page of a drillthrough action, a Back type link is set to
allow users to return to the table of contents.

In the following image, a custom back button image has been
inserted and set as a Back type link to aid navigation:

Back link for an image

The combination of custom navigation and Bookmarks
representing many specific views or reports contributes to an
easier, more productive experience for users. When designed
properly, the user often doesn't need to know which page or
bookmark to navigate to or which filters to apply as this logic is
already built into the report.

View mode
The View icon in the Bookmarks Pane can be used in both Power
BI Desktop and in the Power BI service to navigate between
visuals similar to a slideshow. When View mode is enabled, the
following navigation bar appears at the bottom of the screen and
the user can close other panes and/or launch full screen mode in
the Power BI service to further support the presentation:

View mode navigation

As per the preceding image, the number and order of
Bookmarks, bookmark names, and navigation arrows are
included in the View mode navigation. Bookmarks are ordered
based on their position in the Bookmarks Pane from the top to
the bottom. To revise the order, Bookmarks can be dragged and
dropped to higher or lower positions in the Bookmarks Pane.

ArcGIS Map visual for Power BI
The ArcGIS Map visual for Power BI enables report authors to
develop map visualizations far beyond the capabilities of the
bubble and filled map visuals described in Chapter 11, Creating
and Formatting Power BI Reports. Created by Esri, a market
leader in Geographic Information Systems (GIS), the
ArcGIS Map supports all standard map types (for example,
bubble and heatmap), but also provides many additional features
including a clustering map theme for grouping individual
geographic points and the ability to filter a map by the points
within a geographical area. The ArcGIS Map also enables deep
control over the logic of the size and color formatting, such as the
number of distinct sizes (classes) to display and the algorithm
used to associate locations to these classes. Additionally,
reference layers and cards of demographic and economic
information can be embedded into visuals to provide greater
context.

The ArcGIS Map visual is included in the standard visualizations
pane and enabled by default in Power BI Desktop. However, as
noted in Chapter 16, Deploying the Power BI Report Server, the
ArcGIS Map visual is not currently supported for the Power BI
Report Server and thus is not available in the Power Desktop
application optimized for the Power BI Report Server.
Additionally, an option is available in the Tenant settings page of
the Power BI admin portal to enable or disable the use of the
ArcGIS Maps visual. Details on utilizing the Power BI admin
portal to configure tenant settings and other options are
included in Chapter 18, Administering Power BI for an
Organization.

In the following example, customer addresses in the state of
Washington have been plotted as diamonds of different sizes and
colors based on the Internet Sales measure and the Customer History
Segment column, respectively:

ArcGIS Map visual for Power BI
For the most visually engaging ArcGIS Map, use the Dark Gray Canvas
basemap and bright, saturated colors for the data points plotted. The
Light Gray Canvas basemap, however, avoids the risk of overwhelming
the user with colors, as described in the previous chapter. The Streets
and OpenStreetMap basemap types are practical choices whenever
transportation between the data points or pinned locations is expected.
In the preceding example, the Streets basemap supports the sales team
that may drive from the pinned office location on 11th street in
Bremerton, Washington to the plotted customer addresses.

The visual has been zoomed into the Bremerton, Washington
area near several large customers and a fictional sales office
location denoted by a red pin icon on 11th street near downtown

Bremerton. Pin locations are often used in conjunction with the
Drive Time feature to plot an area relative to specific locations
such as the group of customers who are within a 20-minute drive
of an office.

To configure these options and all other layout and formatting
settings, click the ellipsis in the top right corner and select Edit.
The following image displays the edit mode of an ArcGIS visual
with the Pins menu selected:

ArcGIS Map for Power BI toolbar options

For this visual, the Streets basemap type has been selected and
the Map theme is set to Size & Color. The reference layer USA
Median Age is used to distinguish areas based on age (via color
intensity). Finally, two infographic cards have been selected—
population and age by gender—to display these specific metrics

as the user selects and hovers over the map.

A column named Customer Full Address has been applied to the Location input
field. This column includes the street address, city, state, and postal code
such as the following example: 1097 Kulani Lane, Kirkland, WA, 98033.

The Data Category for this column has been set to Address in Power BI
Desktop to further improve the accuracy of the geocoding process in
which the location input value (the address) is converted to a latitude
and longitude. Latitude and longitude fields are available as well, and
these inputs are recommended over street addresses for greater
performance and scale. A max of 1,500 street addresses can be geocoded
without a plus subscription and up to 5,000 addresses can be geocoded
with a monthly plus subscription.

The Customer History Segment column, described in Chapter
8, Connecting to Sources and Transforming Data with M,
evaluates to one of four values based on the relationship between
the Current Date and the Customer First Purchase date column. In this
example, first year, second year, and third year customers are
assigned the colors purple, green, and blue, respectively. Legacy
customers have been formatted as orange. The size and color
formatting can be customized via the Symbol Style menu, and
these options alone make it relatively easy for users to gain
insights from the visual such as identifying the location of first
year customers.

To provide greater analytical flexibility and to support
presentations, the Date column from the Date dimension table has
been applied to the Time input field, thus creating the timeline
scrollbar. Similar to the play axis of the scatter chart described
later in this chapter, the timeline for the ArcGIS Map supports
both animation via the play and pause buttons and slider
controls to define a specific time frame.

The left and right end points of the timeline can be used in combination
with the animated playback. For example, a time frame of three months

can be defined at the beginning of the timeline, and each frame of the
animation will represent a distinct three month time frame. At each
frame, the user can optionally pause the animation to call attention to
specific points on the visual. These intervals can be set for 3, 6, 9, and 12
months.

The timeline and two measures are further supplemented with
two date intelligence measures in the Tooltips field input. In the
following example, the user has hovered over the address
location of a First Year Customer (a purple diamond) and the two
date intelligence measures (year-to-date and prior year-to-date),
as well as the Date column from the timeline, which leads to them
being exposed:

ArcGIS visual with Tooltips
To avoid the limit of addresses geocoded (1,500, or 5,000 with a Plus
subscription), and to focus the visual on more meaningful data points, a
visual level filter can be applied to a measure. In this example, a visual
level filter has been applied to the Internet Net Sales measure to only include
data points (customer addresses) with over $100. By removing the small

customers, this filter reduced the count of addresses from 1,799 to 921
and retained over 97 percent of the Internet Sales.

Selections of ArcGIS Map locations also impact other visuals on
the report page. For example, the selection of one address
location on the map could cause a bar chart visual to filter or
highlight the specific product subcategories associated with that
location. Additionally, rather than selecting one location at a
time, areas of locations can be selected via the Select Multiple
Locations option and the areas of a reference layer can also be
used to select locations. The multi-select options under the
cursor icon and the cross-filtering of other related Power BI
visuals provide powerful self-service geospatial analysis
capabilities.

The Use ArcGIS Maps for Power BI option should be checked in the
Global Security options of Power BI Desktop. An equivalent option is
exposed in the Power BI service via the Settings menu (Gear icon |
Settings | ArcGIS Maps for Power BI), and this should be checked as well
to render ArcGIS Maps in the online service.

Additionally, a Use ArcGIS Maps for Power BI setting is available in the
Tenant settings page of the Power BI admin portal. Power BI service
administrators can optionally disable this feature to prevent all users
from using ArcGIS Maps for Power BI. The configuration of Tenant
settings in the Power BI admin portal is described in Chapter

18, Administering Power BI for an Organization. The ArcGIS Map visual

is the only standard Power BI visual not currently supported by the
Power BI Report Server.

ArcGIS Maps Plus subscriptions
The ArcGIS Map visual is free, and Power BI reports using the
ArcGIS Map visual can be published for users to view in the
Power BI service and on mobile devices at no extra cost.
However, in many scenarios, the limit of 1,500 geocoding
addresses may prove insufficient. Additionally, the four
basemaps available (Light Gray Canvas, Dark Gray Canvas,
Streets, and OpenStreetMap) may not provide the desired
details, such as satellite imagery.

With an ArcGIS Plus subscription, currently priced at $5 per
user, per month, up to 5,000 addresses can be geocoded and
plotted on a map. In the following image, the Plus icon appears
above the zoom buttons of an ArcGIS Map visual:

ArcGIS Plus subscription icon

Plus subscriptions also enable eight additional basemaps, several
of which including satellite imagery and access to many
additional reference layers and infographics. The following site
maintained by Esri provides further details on Plus
subscriptions: http://arcg.is/2jG5DnG.

It's necessary for both report authors and users or consumers of the
Power BI reports containing the ArcGIS Map visual to have Plus
subscriptions. When an ArcGIS Maps visual contains premium content
(via a Plus subscription), that content is only visible to other subscribed
Plus users.

http://arcg.is/2jG5DnG

Waterfall chart breakdown
The waterfall chart is one of the most powerful standard visuals
in Power BI given its ability to compute and format the variances
of individual items between two periods by default. The items
representing the largest variances are displayed as columns of
varying length, sorted and formatted with either an increase
(green) or decrease (red) color. This built-in logic and
conditional formatting makes waterfall charts both easy to create
and intuitive for users.

In the following example, the Internet Sales of the last two
completed months is broken down by Sales Territory Country:

Waterfall chart with breakdown
The waterfall chart naturally walks the user from the starting point
category on the left (2017-Oct) to the ending point category on the right

(2017-Nov). As per the preceding image, hovering the cursor over a bar
results in the details for this item being displayed as a tooltip. In this
example, hovering over the ($15K) red bar for the United States displays
the Internet Sales for both months, the variance, and the variance as a
percentage. These four tooltip values are provided by default and report
authors can optionally add measures to the Tooltips field to deliver even
greater context.

The Internet Net Sales measure is applied to the y-axis input field,
and the Calendar Yr-Mo and Sales Territory Country columns are applied
to the Category and Breakdown input fields, respectively. For this
visual, the Max breakdowns property available under the
Breakdown formatting card is set to 4 and thus only four
countries are displayed. The other breakdown item, formatted in
yellow by default, is used to summarize the variances for all
items not displayed as a breakdown column. In the preceding
example, the relatively smaller variances from Australia and
Germany are automatically rolled into the other item.

As with other visuals, a Show Data and an Export data option is
available in both Power BI Desktop and when viewing the visual in the
Power BI service. These options are exposed under the ellipsis (three
dots) in the top right corner of each visual. As one example, the user
could select Show Data for the waterfall chart to view the sales data for
all the countries (including Germany and Australia) in a table format.
Report authors can adjust the Max breakdowns property to display
greater detail and reduce the size of the other breakdown. However,
waterfall charts with fewer breakdown columns are easier for users to
interpret.

As per the following image, a filter is applied to the Calendar Month
Status column to only include the Prior Calendar Month and the 2 Mo
Prior Calendar Month values:

Filter impacting the waterfall chart

This filter results in only two month values being available to the
visual and ensures that the visual will update over time. For
example, in March of 2018, the visual will automatically update

to compare January of 2018 versus February of 2018. This filter
can be applied at the report level, page level, or visual level
scope, depending on the scenario.

Details on building date dimension columns such as Calendar Month Status
into a Power BI dataset are included in the Date dimension view section
of Chapter 8, Connecting to Sources and Transforming Data with
M. Additionally, filter scopes and the filter conditions available to each
scope was reviewed in the Report filter scopes section in Chapter
11, Creating and Formatting Power BI Reports.

Analytics pane
In addition to the Field and Formatting panes used to create
report visuals, an Analytics pane is also available for cartesian
visuals such as Line and clustered column charts. This pane
allows report authors to add constant and dynamic reference
lines such as average, max, and min to visuals to provide greater
context and analytical value. Additionally, trend and forecast
lines can be added to display the results of advanced analytical
techniques such as exponential smoothing to support predictive
analytics.

A simple but important use case of the Analytics pane,
exemplified in the Trend lines section below, is to add a constant
line that represents a goal or threshold to compare a measure
against. Dynamic reference lines representing an aggregation
(for example, a median) behave just like DAX measures and
thus, in some scenarios, avoid the need to create new DAX
measures into the source dataset.

The reference lines available in the Analytics pane depend on the type of
visual. For example, reference lines are currently not supported for any
custom visuals and only a constant line can be applied to the stacked
column and bar charts. Additionally, the trend line is exclusive to the
Line and clustered column chart, while the forecast line is exclusive to the
line chart. Moreover, a date or a numeric column is required in the axis
to utilize the trend and forecast lines.

New features and capabilities are planned for the Analytics pane,
including an expanded list of visuals supported. Similar to
the Tooltips feature described in the previous Chapter 11, Creating
and Formatting Power BI Reports, Power BI report authors
should be conscious of the Analytics pane and its ability to
enhance report visuals with additional context and insights.

Trend Line
A Trend Line is available in the Analytics pane for the clustered
column chart and the line chart. The Trend Line is particularly
valuable when a chart contains many data points and significant
variation exists among the points, making it difficult to observe
the trend of the metric visually.

In the following example, a trend line and two additional
reference lines (average and constant) have been added to a
clustered column chart to provide greater insight and context:

Trend, constant, and average reference lines
The Label Density property of the Data labels formatting card has been
set to 100 percent. Additionally, the position property of the data labels
has been set to an inside end with a white color and text size of 11. Clear
visibility of the data labels for each column, in addition to the two
reference lines (Average and Goal), avoids the need to display the Y-
AXIS and gridlines.

Excluding the three reference lines from the Analytics pane, the
clustered column chart simply plots the Internet Sales Customer Count
measure against the Calendar Month Ending Date column. The Calendar
Month Ending Date column (for example, 11/30/2017) is required for the
axis input in this scenario as both the trend line and the forecast
line require either a date or a number data type for the axis. For
example, if the Calendar Yr-Mo column was used for the axis (for
example, 2017-Oct), both the trend line and the forecast line cards
would not appear in the Analytics pane.

The DAX expression used for this measure is included in the Dimension
metrics section of Chapter 10, Developing DAX Measures and Security
Roles. To ensure that the current month's data does not impact on the
trend line, the Calendar Month Status column was used as a page level filter.
The filter condition applied (Is Not Current Calendar Month) excludes
the latest month from the visual and any other visuals on the report
page. Additional information on the Calendar Year and Month Status columns is
included in Chapter 8, Connecting to Sources and Transforming Data with
M.

With the essential column chart built, the three reference lines
can be added from the Analytics pane per the following image:

Analytics pane

As per the preceding image, the Style of the Trend Line is set to
Dashed with a transparency of 0 percent. This formatting
ensures that the trend reference line can be easily distinguished
from other data on the chart such as the other two reference
lines. The Combine Series property is not relevant to this visual

as there is only one series (Internet Sales Customer Count), and Use
Highlight Values is the default setting for calculating the Trend
Line.

The numeric symbols (1) next to the Constant Line and Average
Line cards denote that a reference line of each type has also been
applied to the visual. For these reference lines, a Dotted line style
has been used, and custom names have been configured (for
example, Goal, Average) to be displayed via Data labels. These
two additional lines make it easy for users to identify the
columns which are above or below the average value for the
visual (89) and the constant goal value of 120.

Forecast line
The Forecast line, exclusive to standard line chart visuals,
utilizes predictive forecasting algorithms to generate both
specific forecast data points as well as upper and lower
boundaries. The report author has control over the number of
data points to forecast, the confidence interval of the forecast
(for example, 80 percent, 95 percent), and can apply formatting
to distinguish the forecast from the actual data points.
Additionally, the forecasting feature allows authors to optionally
exclude a number from the last data points. This Ignore last
property is useful for excluding incomplete periods as well as
evaluating the accuracy of the forecast relative to recently
completed periods.

In the following example, the clustered column chart from the
Trend Lines section has been switched to a Line chart and a
Forecast line for the next two months has been added:

Forecast line
By hovering over the first forecast point, December of 2017, the
Forecasted Customer Count value of 139 is displayed along with the
upper (167) and lower (112) boundaries. The user can easily distinguish
the last actual data point, 131 for November of 2017, from the forecast
via the Dotted style of the Forecast line and the dark fill of the Confidence
band style. The Trend, Average, and Goal reference lines applied in the
previous section provide further context to the Forecast.

Like the Trend Lines section example, the Calendar Month Ending Date
column is used as the axis, and the Current Month (2017-Dec) has
been excluded with a page level filter condition on the Calendar
Month Status column. This filter condition avoids the need to utilize
the Ignore last property of the forecast analytics card. The Label
Density property has been reduced to 72 percent to reduce
clutter given in the additional reference line.

As per the following image, the Forecast length, Confidence
interval, and a custom name (Forecasted Customer Count) have been
applied to the Forecast line:

Forecast properties in the Analytics pane

The Seasonality property is optional, but since the data reflects
calendar months, a value of 12 overrides the automatically
detected season value. Likewise, for quarterly data, a value of 4
could be applied.

The Confidence interval property defines the distance between
the upper and lower boundaries from the forecasted data points.
For example, the minimum confidence interval of 75 percent

would produce a more narrow range, and the maximum
confidence interval of 99 percent would widen the boundaries of
the first forecast point to an upper limit of 194 and a lower limit
of 84.

The Ignore last property can be used to evaluate how accurately the
forecast would've predicted recent data points. In this example, an
Ignore last value of 2 would result in forecast values for October and
November of 2017—the last two completed months. The forecast
algorithm would use all available data points through September of 2017
to generate the two forecast points.

If the actual data points for these two months fall outside the confidence
interval (upper and lower bounds) of the forecast, the forecast may not
be valid for the given data, or the Confidence Interval may be too
narrow. This testing technique is referred to as hindcasting.

Quick Insights
Quick Insights is one of the most analytically advanced features
in Power BI as it enables sophisticated machine learning
algorithms to be executed against datasets or specific subsets of
those datasets. The results of these computations automatically
generate highly formatted Power BI visuals which can be
integrated into reports as though they were created from scratch.
Quick Insights is only generally available in the Power BI service
for import mode datasets and dashboard tiles reflecting those
datasets. However, the essential capabilities of Quick Insights
are also now available in preview for Power BI Desktop.

In the following image, Quick Insights has been executed against
the AdWorks Enterprise dataset in the Power BI service:

Quick Insights for a dataset in the Power BI Service

To execute Quick Insights against an entire dataset, see the Get
quick insights option under the Actions ellipsis menu in the
Power BI service. Once the insights have been generated, a View
insights menu option replaces the Get quick insights option. The
visuals generated from the insights, such as the clustered bar
chart on the left, advise of the algorithm used (for example,
outlier, cluster, and correlation). Most importantly, the visuals
can be pinned to dashboards and are displayed without the
supporting text like normal dashboard tiles. In Power BI
Desktop, Quick Insights are currently limited to specific data
points represented by report visuals.

Quick Insights cannot be executed against datasets which contain row-
level security roles as described in Chapter 10, Designing DAX Measures and
Security Roles. Additionally, Quick Insights cannot be executed against

DirectQuery datasets, Live connection datasets to Analysis Services
models, and realtime streaming datasets.

Explain the increase/decrease
Quick Insight features are enabled in Power BI Desktop by
default, allowing users to right-click data points in visuals and
execute the relevant analysis. In the following example, the user
has right-clicked the data point for 2017-Apr, and as a result, an
option to explain the decrease is exposed in the Analyze menu:

Explaining the decrease in Power BI Desktop

Clicking Explain the decrease executes machine learning
algorithms against the dataset and populates a window with
visuals representing the insights retrieved. The user can scroll
vertically to view the different insights obtained such as the
Customer Gender column accounting for a majority of the decrease, or
Product Name XYZ, which had the largest decrease among all
products.

By default, a waterfall visual is used to display each insight, but
other visuals such as the scatter chart and the 100 percent
stacked column chart are available too. In the following example,

the user has scrolled to an insight based on the Customer History
Segment column and views the data as a waterfall chart:

Explain the decrease in Power BI Desktop

Clicking the plus sign at the top right corner of the text box
explaining the insight adds the visual to the report page. Adding
the visual to the report page automatically populates the

associated field wells and visual level filters as though the visual
was created manually. If necessary, the report author can apply
further formatting to align the visual with the design and layout
of the page.

Currently, Quick Insights in Power BI Desktop is limited to the local
dataset and is exclusive to import mode datasets. For example, the
Explain the decrease option will not appear when connecting to a
published Power BI dataset or a SSAS database via Live connection.
Given the importance of isolating reports from a central dataset as
described in the previous Chapter 11, Creating and Formatting Power BI
Reports this limitation represents a significant obstacle to utilize this
feature in corporate deployments.

Additionally, there are several limitations on the kinds of measures and
filters supported. For example, measures which use the DISTINCTCOUNT() and

SUMX() functions are not supported, and measures containing conditional

logic (for example, IF()) cannot be either.

Custom visuals
In addition to the standard visuals included in the Visualizations
pane of Power BI Desktop, a vast array of custom visuals can be
added to reports to deliver extended functionality or to address
specific use cases. These visuals, many of which have been
created by Microsoft, are developed with the common
framework used by the standard visuals and are approved by
Microsoft prior to inclusion in Microsoft AppSource. Given the
common framework, custom visuals can be integrated into
Power BI reports with standard visuals and will exhibit the same
standard behaviors such as filtering via slicers and report and
page filters.

This section highlights four powerful custom visuals and the
distinct scenarios and features they support. Power BI report
authors and BI teams are well-served to remain conscience of
both the advantages and limitations of custom visuals. For
example, when several measures or dimension columns need to
be displayed within the same visual, custom visuals such as the
Impact Bubble Chart and the Dot Plot by Maq Software may
exclusively address this need. In many other scenarios, a trade-
off or compromise must be made between the incremental
features provided by a custom visual and the rich controls built
into a standard Power BI visual.

Custom visuals available in AppSource and within the integrated
custom visuals store for Power BI Desktop are all approved for
running in browsers and on mobile devices via the Power BI
mobile apps. A subset of these visuals have been certified by
Microsoft and support additional Power BI features such as

email subscriptions and export to PowerPoint. Additionally,
certified custom visuals have met a set of code requirements and
have passed strict security tests. The list of certified custom
visuals and additional details on the certification process is
available at the following link: http://bit.ly/2AFAC9W.

http://bit.ly/2AFAC9W

Adding a custom visual
Custom visuals can be added to Power BI reports by either
downloading .pbiviz files from Microsoft AppSource or via the
integrated Office Store of custom visuals in Power BI Desktop.
Utilizing AppSource requires the additional step of downloading
the file; however, it can be more difficult to find the appropriate
visual as the visuals are not categorized. However, AppSource
provides a link to download a sample Power BI report (.pbix file)
to learn how the visual is used, such as how it uses field inputs
and formatting options. Additionally, AppSource includes a
short video tutorial on building report visualizations with the
custom visual.

The following image reflects Microsoft AppSource filtered by the
Power BI visuals Add-ins category:

Power BI custom visuals in AppSource
The following link filters AppSource to the Power BI custom visuals per
the preceding image: http://bit.ly/2BIZZbZ.
The search bar at the top and the vertical scrollbar on the right can be
used to browse and identify custom visuals to download. Each custom
visual tile in AppSource includes a Get it now link which, if clicked,
presents the option to download either the custom visual itself (.pbiviz
file) or the sample report for the custom visual (.pbix file). Clicking
anywhere else in the tile other than Get it now prompts a window with a
detailed overview of the visual, a video tutorial, and customer reviews.

To add custom visuals directly to Power BI reports, click the
Import from store option via the ellipsis of the
Visualizations pane, as per the following image:

http://bit.ly/2BIZZbZ

Importing custom visuals from the store
If a custom visual (.pbiviz file) has been downloaded from AppSource, the
Import from file option can be used to import this custom visual to the
report. Additionally, both the Import from store and Import from
file options are available as icons on the Home tab of the Report view in
Power BI Desktop.

Selecting Import from store launches an MS Office Store window
of Power BI Custom Visuals. Unlike AppSource, the visuals are
assigned to categories such as KPIs, Maps, and Advanced
Analytics, making it easy to browse and compare related visuals.
More importantly, utilizing the integrated Custom Visuals store
avoids the need to manage .pbiviz files and allows report authors
to remain focused on report development.

As an alternative to the VISUALIZATIONS pane, the From
Marketplace and From File icons on the Home tab of the Report
view can also be used to add a custom visual. Clicking the From
Marketplace icon in the follow image launches the same MS
Office Store window of Power BI Custom visuals as selecting
Import from store via the VISUALIZATIONS pane:

From Marketplace ribbon icon

In the following image, the KPIs category of Custom visuals is
selected from within the MS Office store:

Custom visuals via the Office Store in the Power BI Desktop

The Add button will directly add the custom visual as a new icon
in the Visualizations pane. Selecting the custom visual icon will
provide a description of the custom visual and any customer
reviews. The Power BI team regularly features new custom
visuals in the blog post and video associated with the monthly
update to Power BI Desktop. The visual categories, customer
reviews, and supporting documentation and sample reports all
assist report authors in choosing the appropriate visual and
using it correctly.

Organizations can also upload custom visuals to the Power BI
service via the organization visuals page of the Power BI Admin
portal. Once uploaded, these visuals are exposed to report
authors in the MY ORGANIZATION tab of the custom visuals
MARKETPLACE as per the following example:

My Organization custom visuals

This feature can help both organizations and report authors
simplify their use of custom visuals by defining and exposing a
particular set of approved custom visuals. For example, a policy
could define that new Power BI reports must only utilize
standard and organizational custom visuals. The list of
organizational custom visuals could potentially only include a

subset of the visuals which have been certified by Microsoft.
Alternatively, an approval process could be implemented so that
the use case for a custom visual would have to be proven or
validated prior to adding this visual to the list of organizational
custom visuals. Additional details on managing organizational
custom visuals are included in Chapter 18, Administering Power BI
for an Organization.

Power KPI visual
Key Performance Indicators (KPIs) are often prominently
featured in Power BI dashboards and in the top left area of
Power BI report pages, given their ability to quickly convey
important insights. Unlike card and gauge visuals which only
display a single metric or a single metric relative to a target
respectively, KPI visuals support trend, variance, and conditional
formatting logic. For example, without analyzing any other
visuals, a user could be drawn to a red KPI indicator symbol and
immediately understand the significance of a variance to a target
value as well as the recent performance of the KPI metric. For
some users, particularly executives and senior managers, a few
KPI visuals may represent their only exposure to an overall
Power BI solution, and this experience will largely define their
impression of Power BI's capabilities and the Power BI project.

Given their power and important use cases, report authors
should become familiar with both the standard KPI visual and
the most robust custom KPI visuals such as the Power KPI
Matrix, the Dual KPI, and the Power KPI. Each of these three
visuals have been developed by Microsoft and provide additional
options for displaying more data and customizing the formatting
and layout.

The Power KPI Matrix supports scorecard layouts in which many
metrics can be displayed as rows or columns against a set of dimension
categories such as Operational and Financial. The Dual KPI, which was
featured in the Microsoft Power BI Cookbook (https://www.packtpub.com/big-data-and
-business-intelligence/microsoft-power-bi-cookbook), is a good choice for displaying two
closely related metrics such as the volume of customer service calls and
the average waiting time for customer service calls.

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

One significant limitation of custom KPI visuals is that data alerts
cannot be configured on the dashboard tiles reflecting these visuals in the
Power BI service. Data alerts are currently exclusive to the standard
card, gauge, and KPI visuals.

In the following Power KPI visual, Internet Net Sales is compared to
Plan, and the prior year Internet Net Sales and Year-over-Year
Growth percent metrics are included to support the context:

Power KPI custom visual
The Internet Net Sales measure is formatted as a solid, green line whereas
the Internet Sales Plan and Internet Net Sales (PY) measures are formatted with
Dotted and Dot-dashed line styles respectively. To avoid clutter, the Y-
Axis has been removed and the Label Density property of the Data labels
formatting card has been set to 50 percent. This level of detail (three
measures with variances) and formatting makes the Power KPI one of
the richest visuals in Power BI.

The Power KPI provides many options for report authors to
include additional data and to customize the formatting logic

and layout. Perhaps its best feature, however, is the Auto Scale
property, which is enabled by default under the Layout
formatting card. Similar to the responsive visuals feature
described in the Mobile optimized reports section of the
previous Chapter 11, Creating and Formatting Power BI Reports,
Auto Scale causes the visual to make intelligent decisions about
which elements to display given the available space.

For example, in the following image, the Power KPI visual has
been pinned to a Power BI dashboard and resized to the smallest
tile size possible:

Minimal Power BI dashboard tile

As per the preceding dashboard tile, the less critical data
elements such as July through August and the year-over- year %
metric were removed. This auto scaling preserved space for the
KPI symbol, the axis value (2017-Nov), and the actual value
($296K). With Auto Scale, a large Power KPI custom visual can
be used to provide granular details in a report and then re-used
in a more compact format as a tile in a Power BI dashboard.

Another advantage of the Power KPI is that minimal
customization of the data model is required. The following image
displays the dimension column and measures of the data model
mapped to the field inputs of the aforementioned Power KPI
visual:

Power KPI field inputs

As described in previous chapters, the Sales and Margin Plan data is
available at the monthly grain and thus the Calendar Yr-Mo column is
used as the Axis input. In other scenarios, a Date column would be
used for the Axis input provided that the actual and target
measures both support this grain.

The order of the measures used in the Values field input is
interpreted by the visual as the actual value, the target value, and
the secondary value.

In this example, Internet Net Sales is the first or top measure in the
Values field and thus is used as the actual value (for example,
$296K for November). A secondary value as the third measure in
the Values input (Internet Net Sales (PY)) is not required if the intent
is to only display the actual value versus its target.

The KPI Indicator Value and Second KPI Indicator Value fields

are also optional. If left blank, the Power KPI visual will
automatically calculate these two values as the percentage
difference between the actual value and the target value, and the
actual value and the secondary value respectively. In this
example, these two calculations are already included as
measures in the data model and thus applying the Internet Net Sales
Var to Plan % and Internet Net Sales (YOY %) measures to these fields
further clarifies how the visual is being used.

If the metric being used as the actual value is truly a critical measure
(for example, revenue or count of customers) to the organization or the
primary user, it's almost certainly appropriate that related target and
variance measures are built into the Power BI dataset. In many cases,
these additional measures will be used independently in their own
visuals and reports. Additionally, if a target value is not readily
available, such as the preceding example with the Internet Net Sales Plan, BI
teams can work with stakeholders on the proper logic to apply to a
target measure, for example, 10 percent greater than the previous year.

The only customization required is the KPI Indicator Index field.
The result of the expression used for this field must correspond
to one of five whole numbers (1-5) and thus one of the five
available KPI Indicators. In the following example, the KPI
Indicators KPI 1 and KPI 2 have been customized to display a
green caret up icon and a red caret down icon respectively:

KPI Indicator formatting card

Many different KPI Indicator symbols are available including up
and down arrows, flags, stars, and exclamation marks. These
different symbols can be formatted and then displayed
dynamically based on the KPI Indicator Index field expression.
In this example, a KPI index measure was created to return the
value 1 or 2 based on the positive or negative value of the Internet
Net Sales Var to Plan % measure respectively:

Internet Net Sales vs Plan Index = IF([Internet Net Sales Var to Plan %] > 0,1,2)

Given the positive 4.6 percent variance for November of 2017,
the value 1 is returned by the index expression and the green
caret up symbol for KPI 1 is displayed. With five available KPI
Indicators and their associated symbols, it's possible to embed
much more elaborate logic such as five index conditions (for
example, poor, below average, average, above average, good) and

five corresponding KPI indicators.

Four different layouts (Top, Left, Bottom, and Right) are available to
display the values relative to the line chart. In the preceding example, the
Top layout is chosen as this results in the last value of the Axis input
(2017-Nov) to be displayed in the top left corner of the visual. Like the
standard line chart visual in Power BI Desktop, the line style (for
example, Dotted, Solid, Dashed), color, and thickness can all be
customized to help distinguish the different series.

Chiclet Slicer
As per the previous chapter, the standard slicer visual can
display the items of a source column as a list or as a dropdown.
Additionally, if presented as a list, the slicer can optionally be
displayed horizontally rather than vertically. The custom Chiclet
Slicer, developed by Microsoft, allows report authors to take
even greater control over the format of slicers to further improve
the self-service experience in Power BI reports.

In the following example, a Chiclet Slicer has been formatted to
display calendar months horizontally as three columns:

Chiclet Slicer

Additionally, a dark green color is defined as the Selected Color
property under the Chiclets formatting card to clearly identify
the current selections (May and June). The Padding and Outline
Style properties, also available under the Chiclets card, are set to
1 and Square respectively, to obtain a simple and compact
layout.

Like the slicer controls in Microsoft Excel, Chiclet Slicers also
support cross highlighting. To enable cross highlighting, specify

a measure which references a fact table as the Values input field
to the Chiclet Slicer. For example, with the Internet Net Sales
measure set as the Values input of the Chiclet Slicer, a user
selection on a bar representing a product in a separate visual
would update the Chiclet Slicer to indicate the calendar months
without Internet Sales for the given product. The Disabled Color
property can be set to control the formatting of these unrelated
items.

Chiclet Slicers also support images. In the following example,
one row is used to display four countries via their national flags:

Chiclet Slicer with images

For this visual, the Padding and Outline Style properties under
the Chiclets formatting card are set to 2 and Cut respectively.
Like the Calendar Month slicer, a dark green color is configured
as the Selected Color property helping to identify the country or
countries selected—Canada, in this example.

The Chiclet Slicer contains three input field wells—Category,
Values, and Image. All three input field wells must have a value
to display the images. The Category input contains the names of
the items to be displayed within the Chiclets. The Image input
takes a column with URL links corresponding to images for the
given category values. In this example, the Sales Territory Country
column is used as the Category input and the Internet Net Sales
measure is used as the Values input to support cross
highlighting. The Sales Territory URL column, which is set as an

Image URL data category, is used as the Image input. For
example, the following Sales Territory URL value is associated with
the United States: http://www.crwflags.com/fotw/images/u/us.gif.

A standard slicer visual can also display images when the data category
of the field used is set as Image URL. However, the standard slicer is
limited to only one input field and thus cannot also display a text column
associated with the image. Additionally, the standard slicer lacks the
richer cross-highlighting and formatting controls of the Chiclet Slicer.

http://www.crwflags.com/fotw/images/u/us.gif

Impact Bubble Chart
One of the limitations with standard Power BI visuals is the
number of distinct measures that can be represented graphically.
For example, the standard scatter chart visual is limited to three
primary measures (X-AXIS, Y-AXIS, and SIZE), and a fourth
measure can be used for color saturation. The Impact Bubble
Chart custom visual, released in August of 2017, supports five
measures by including a left and right bar input for each bubble.

In the following visual, the left and right bars of the Impact
Bubble Chart are used to visually indicate the distribution of
AdWorks Net Sales between Online and Reseller Sales channels:

High Impact Bubble Chart
The Impact Bubble Chart supports five input field wells: X-AXIS, Y-
AXIS, SIZE, LEFT BAR, and RIGHT BAR. In this example, the following
five measures are used for each of these fields respectively: AdWorks Net
Sales, AdWorks Net Margin %, AdWorks Net Sales (YTD), Internet Net Sales, and Reseller Net
Sales.

The length of the left bar indicates that Australia's sales are
almost exclusively derived from online sales. Likewise, the length
of the right bar illustrates that Canada's sales are almost wholly
obtained via Reseller Sales. These graphical insights per item
would not be possible for the standard Power BI scatter chart.
Specifically, the Internet Net Sales and Reseller Net Sales measures
could only be added as Tooltips, thus requiring the user to hover
over each individual bubble.

In its current release, the Impact Bubble Chart does not support
the formatting of data labels, a legend, or the axis titles.
Therefore, a supporting text box can be created to advise the user
of the additional measures represented. In the top right corner of
this visual, a text box is set against the background to associate
measures to the two bars and the size of the bubbles.

Dot Plot by Maq Software
Just as the Impact Bubble Chart supports additional measures,
the Dot Plot by Maq Software allows for the visualization of up to
four distinct dimension columns. With three Axis fields and a
Legend field, a measure can be plotted to a more granular level
than any other standard or custom visual currently available to
Power BI. Additionally, a rich set of formatting controls are
available to customize the Dot Plot's appearance, such as
orientation (horizontal or vertical), and whether the
Axis categories should be split or stacked.

In the following visual, each bubble represents the internet sales
for a specific grouping of the following dimension columns: Sales
Territory Country, Product Subcategory, Promotion Type, and Customer History
Segment:

Dot Plot by Maq Software

For example, one bubble represents the Internet Sales for the Road
Bikes Product Subcategory within the United States Sales Territory Country,
which is associated with the volume discount promotion type
and the first year Customer History Segment. In this visual, the Customer
History Segment column is used as the legend and thus the color of
each bubble is automatically formatted to one of the three
customer history segments.

In the preceding example, the Orientation property is set to Horizontal
and the Split labels property under the Axis category formatting card is
enabled. The Split labels formatting causes the Sales Territory Country
column to be displayed on the opposite axis of the Product Subcategory
column. Disabling this property results in the two columns being
displayed as a hierarchy on the same axis with the child column (Product
Subcategory) positioned inside the parent column (Sales Territory Country).

Despite its power in visualizing many dimension columns and its

extensive formatting features, data labels are currently not
supported. Therefore, when the maximum of four dimension
columns are used, such as in the previous example, it's necessary
to hover over the individual bubbles to determine which specific
grouping the bubble represents, such as in the following
example:

Four dimension columns per bubble of the Dot Plot visual

If only three dimension columns are used, which is still a detailed grain,
then the lack of data labels is much less of a limitation. For example, the
Sales Territory Country and Product Subcategory columns could be applied to the
Axis category I and Axis category II field wells respectively, and the
promotion type column could be added to the Legend. The two axis labels
and the color of each bubble (per promotion type) would visually
indicate the three-column grouping each bubble represents.

Animation and data storytelling
A top responsibility for many data professionals is the ability to
convey their findings to others in a clear and compelling fashion.
Common scenarios for data storytelling include recurring
performance review meetings (for example, fiscal period close)
and special project or ad hoc meetings with senior managers and
executives. For these meetings, the data professional or team has
already identified the insights to highlight, but must plan to
properly communicate this message to the specific stakeholders
or audience.

Power BI animation features, including bookmarks described
earlier in this chapter, provide powerful support for data
storytelling. In addition to the play axis available to the standard
Scatter chart visual, many custom visuals support animation
features such as the LineDot Chart and the Pulse Chart.

Play axis for scatter charts
The scatter chart is the only standard visual in Power BI Desktop
which supports animation. By applying a time series column to
the scatter chart's Play Axis field, animated playback and trace
features are enabled. For example, a visual can be paused at a
specific point along the time series, allowing the user to provide
additional context. The user can also select one or multiple items
which have been plotted (for example, product categories) to
display data points representing the previous time periods.

In the following visual, the user has paused the animation on the
month of September via the Play Axis and selected the icon
associated with the Touring Bikes product subcategory:

Scatter chart with Play axis

With the Touring Bikes subcategory selected, a trace line appears
connecting the latest data point for this subcategory to its
preceding data points. In this example, the user can explain that
Touring Bikes weren't introduced until May of 2017 (the first data
point), but by September was almost equal to the Road Bikes
subcategory for both Online and Reseller Sales. Additionally, the user
can hover the cursor over the four preceding data points
representing May through August to provide the details for these
months.

Date, number, and text columns can be used in the Play Axis for the

scatter chart. As per Chapter 9, Designing Import and DirectQuery Data
Models, the Sort By column property can be used to define a logical sort
order for text columns such as sorting a Month name column by a Month number
column.

Pulse Chart
The Pulse Chart custom visual, developed by Microsoft, provides
both animation and annotation features to support data
storytelling. The Pulse Chart animates the value of a single
measure over time and pauses at dates associated with events to
display pop-up boxes of annotations describing these events.
During this pause, which can also be applied manually via
playback buttons, other Power BI visuals on the same report
page are filtered by the event date. Additionally, a second
measure can be visualized as a counter at the top of the chart via
the Runner Counter field.

In the following example, a year-to-date (YTD) online sales
measure and four events with annotations are plotted on a Pulse
Chart:

Pulse Chart
The YTD sales measure is visualized via the animated line (and dots) in
relation to the Y axis. For this example, a YTD customer count measure
has also been applied to the Runner Counter field input. With the visual
paused on the shipping promotion event of October 12, 2017, the Y axis
indicates a sales value of approximately $8.00 M, and the Runner
Counter displays a count of 8,344 customers. Alternatively, the same
measure can be applied to both the Values and Runner Counter fields,
thus providing the precise value at each pause in addition to the trend
via the line. Examples of defining YTD and customer count measures are
included in Chapter 10, Developing DAX Measures and Security Roles.

If event annotations are not needed, only the Timestamp and
Values input fields are required to render the Pulse Chart. Event
Title, Event Description, and Event Size input fields are available to
display events and annotations as pop-up boxes. Additionally,

the formatting pane provides several cards for defining the look
and behavior of the Pulse Chart, including the size and color of
the pop-up textboxes and the speed of the animation. For
example, white text at size 14 can be formatted against a black fill
background and the pause at each event can be set to four
seconds.

To support the Pulse Chart in the preceding example, a separate
table of events has been added to the dataset as per the following
image:

Events table

The Event Date column is used to define a one-to-many
relationship from the Events table to the Date dimension table with
single direction cross-filtering. The Date column from the Date
dimension table is applied to the Pulse Chart's Timestamp input
field, and the Event Title and Event Description columns from the
events table are applied to their respective input fields.

The formatting options for the X and Y axes of the Pulse Chart are much
less robust than the standard line chart. As one example, the Y Axis
gridlines cannot be disabled. Gridlines are not visible in the preceding
example purely because the axis color was set to match the background
color. Additionally, the second and later lines of event descriptions in
pop-up boxes are displayed without spaces. Report authors can adjust
the width of pop-ups or reduce the length of event descriptions to account
for this.

Summary
This chapter reviewed many advanced analytical and
visualization features that are available to deliver powerful and
compelling report content. This included the design of
drillthrough report pages, the configuration of custom
navigation controls via Bookmarks, and advanced analytics such
as predictive forecasting with the Analytics pane. Additionally,
the ArcGIS Map visual for Power BI and custom visuals was
introduced as a means to support specific use cases and to
extend solutions beyond the capabilities of Power BI's standard
visuals.

The next chapter utilizes the report visualizations and design
patterns described in this chapter and the previous chapter to
create Power BI dashboards. This includes simple, single
dashboard projects and more elaborate multi-dashboard
architectures representing different levels of detail. Although
some users may only view or interact with Power BI via
dashboards, the quality and sustainability of this content, and
particularly the ability to analyze the supporting details, is
largely driven by the report design concepts and features from Cha
pter 11, Creating and Formatting Power BI Reports.

Designing Power BI Dashboards
and Architectures
This chapter leverages the dataset and report development
features and concepts from prior chapters to plan and develop
Power BI dashboards. Alternative dashboard architectures are
described, including an organizational methodology that seeks to
align business teams at various levels within an organization to a
common set of corporate KPIs. The design and implementation
of these dashboards, including layout, custom links, and mobile-
optimized dashboards are described in this
chapter. Additionally, other top features and capabilities of
dashboards are reviewed, including live report pages and the
integration of content from other report types, including SQL
Server Reporting Services (SSRS) paginated reports and
Microsoft Excel workbooks.

In this chapter, we will review the following topics:

Dashboards versus reports

Multi-dashboard architectures

Dashboard tiles

Custom links

Live report pages

Mobile-optimized dashboards

SQL Server Reporting Services integration

Excel Workbook integration

Dashboards versus reports
Executives and high-level stakeholders require a holistic yet
streamlined view of the top metrics, or Key Performance
Indicators (KPIs), established by their organization. While
Power BI reports deliver a rich, self-service analytical experience,
optionally at a very detailed level, Power BI dashboards provide
an integrated and simplified consumption layer. From a
technical architecture standpoint, Power BI dashboards are
exclusive to the Power BI online service and are primarily
composed of tiles representing visuals from one or many reports.
Although each Power BI report is limited to a single source
dataset, a dashboard's tiles can represent multiple datasets from
highly disparate sources to help provide a 360 degree view on a
single canvas.

To less experienced users and BI team members, the terms and
capabilities associated with dashboards and reports can be
misunderstood.

For example, the data-driven alert is exclusive to Power BI
dashboards, while embedding in SharePoint online is specific to
reports. More fundamentally, the user experience with slicer
selections, bookmarks, and cross-highlighting available in
reports and Power BI Desktop is not available in dashboards,
exclusive of pinned live report pages.

Although several capabilities, such as email subscriptions and
printing, are common to reports and dashboards, BI teams are
well served to design dashboards and reports according to their
distinct roles in Power BI. For example, a dashboard should not

contain granular details or complex visuals, but rather the
essential metrics describing the stakeholder's area of
responsibility or influence.

Data-driven alerts are exclusive to Power BI dashboards in the
Power BI service. Data alerts and their corresponding
notifications are not available to Power BI reports, including
reports published to the Power BI Report Server. The ability to
embed custom alert rules and the deep integration of data alerts
with the Power BI mobile apps is a top reason to leverage
dashboards in the Power BI service. Data alerts and email
subscriptions to reports and dashboards in the Power BI service
is reviewed in Chapter 17, Creating Power BI Apps and Content
Distribution.

The subsequent sections of this chapter describe many core
dashboard features and capabilities including dashboard tiles,
mobile optimizations, and alternative sources, including Excel
and SSRS.

Multi-dashboard architectures
For small projects and the early iterations of an agile BI project,
a single dashboard and a few supporting reports may be
sufficient. For many dashboard users, however, multiple
dashboards with their own distinct reports are needed to
adequately reflect the broader set of metrics they're responsible
for. Both of these approaches, single dashboard, and multiple
dashboards are geared towards a specific stakeholder or group of
consumers, such as the vice presidents of sales group. Although
these methodologies may meet the needs of their intended users,
a potential risk is a lack of coordination across teams.

For example, business units would reference distinct metrics
included in their dashboard and these metrics may not be
included in the dashboards of senior managers or other business
units.

To promote greater consistency and coordination across groups
of users, BI teams can pursue an integrated, organizational
dashboard architecture. In this approach, the same metrics and
KPIs considered strategic for the organization are available in
multiple dashboards specific to levels in an organizational
hierarchy or distinct business units. The Global sales dashboard,
described in the Dashboard design section earlier, represents
this methodology as separate dashboards specific to individual
sales territory groups that would include the same KPIs as the
global dashboard. This approach ensures that dashboard tiles
are relevant to the specific users and make it possible to analyze
up and down a natural organizational hierarchy. Additionally, a
common dashboard layout with integrated KPIs makes Power BI

solutions much easier to manage with limited BI resources.

Single-dashboard architecture
In the following diagram, a single dashboard focused on Reseller
Sales contains tiles representing report visuals from four separate
Power BI reports:

Single-dashboard architecture

By default, a user selection on any of the dashboard tiles opens
the report page of the underlying report. For example, a
dashboard tile reflecting the percentage of bike sales versus
other product categories would be linked to the Reseller Product Mix
report and the specific page of this report containing the source
visual.

Each Power BI report is based on a Live connection to the AdWorks
Enterprise dataset. As described in the Live connections to Power
BI datasets section in Chapter 11, Creating and Formatting Power
BI Reports, leveraging this feature avoids the duplication of
datasets since each Power BI Desktop report file (PBIX) only
contains the visualization layer (for example, visuals,
formatting). Although relatively simple to build and support, the
single Reseller Sales dashboard architecture provides both a
summary overview of a diverse set of essential metrics and
visuals (represented as dashboard tiles) as well as an entry point
to reports containing the details supporting this dashboard. As
described in the previous two chapters, the Power BI reports
could include multiple report pages of visuals related to the
dashboard and leverage interactive features, such as slicers and
bookmarks, to enable users to more easily explore these reports.

All of the content in this architecture - the dashboard, reports, and
dataset would be hosted in a single app workspace in the Power BI
service. Chapter 14, Managing Application Workspaces and
Content explains the role and configuration of app workspaces.

Multiple-dashboard
architecture
In the following diagram, a Reseller Margin dashboard and a Reseller
Margin Trends report have been added to the solution described in
the previous section:

Multiple-dashboard architecture

In this design, a visual from the Reseller Margin Analysis report has
been pinned to both the Reseller Sales and the Reseller Margin
dashboards, per the preceding diagram. This is not required but
is recommended for usability such that users can maintain
context as they navigate between both dashboards. The new

Reseller Margin Trends report, built via a Live connection to the
published AdWorks Enterprise dataset, exclusively supports the Reseller
Margin dashboard.

This architecture extends the scope of the solution to provide
greater visibility to margin metrics and trends not available via
the single dashboard. For example, rather than navigating
through the multiple pages of the two reseller margin reports
(Reseller Margin Analysis, Reseller Margin Trends), users could access the
Reseller Margin dashboard for a more simplified dashboard
experience. In addition to user convenience and the limited
scope of a single dashboard, utilizing dashboards and their
cached data helps to reduce the workload on the underlying
dataset and resources.

Like the single dashboard architecture, all content (Dashboards,
Reports, Datasets) from this multi-dashboard architecture is included
in the same app workspace in the Power BI service. Given this common
workspace, each dashboard tile can be linked to a report or dashboard in
the same workspace. For example, the one margin-related tile on the
sales dashboard could be linked to the margin dashboard rather than the
default source report. The Dashboard tiles section later in this chapter
contains an example of configuring custom links.

Organizational dashboard
architecture
In the following diagram, four dashboards contain corporate
KPIs at the global level and for the three sales territory groups:

Organizational dashboard architecture

Since the same KPIs or metrics are included in each of the four
dashboards, users of these dashboards are able to remain aligned
with the same goals and can more clearly share their findings
and results across teams and levels in the organization. From the
perspective of an executive at the global level, the Global Sales
dashboard provides an intuitive entry point into the individual
sales territory groups and potentially further layers, if necessary.

For example, the Europe Sales territory group missed the total net
sales plan by 11.6% for the month of November 2017, per the
Global Sales dashboard described in the Dashboard design
section. The executive could simply click this tile to access the
Europe Sales dashboard to determine whether the sales miss was
driven by a particular country (for example, France, Germany,
United Kingdom) and how European sales performed across the
online and reseller sales channels.

The following European sales dashboard follows the design
(layout, visual selection) of the Global sales dashboard:

Europe sales dashboard

The three tiles aligned at the top of the Europe sales dashboard
are exactly the same tiles as presented on the Global sales
dashboard. The only difference is that the values are formatted
in thousands rather than millions, given the smaller numbers for

several of the European sales dashboard tiles. In this example,
the executive interested in the -11.6% miss to sales plan for
November of 2017 could access the Europe sales dashboard with
a single click from the Global sales dashboard and determine
that Germany and France were responsible for the
underperformance with misses of -15% and -19.8%, respectively.

The three tiles representing the second row of the Global and
Europe sales dashboard (Net Sales YTD versus Plan, Net Margin % YTD
versus Plan, Sales Channel Mix) do not have to be the same across the
dashboards since these are not the approved KPIs for the
organization. Maintaining a 1:1 match in terms of tiles across the
dashboards can be beneficial as this allows users to navigate
between dashboards for further analysis of any given tile.
However, in many scenarios, there are metrics or visuals that are
more pertinent to the given business unit and users may rarely
need to analyze non-KPIs across multiple dashboards.

Per the organizational dashboard architecture diagram, a set of
three dedicated European sales reports support the Europe sales
dashboard. The pages of these reports may provide sufficient
detail or, depending on the organizational structure and
requirements, an additional layer of dashboards dedicated to
each sales territory country could be added. Other forms of the
organizational dashboard architecture include dedicated
dashboards by product group, such as Bikes, Clothing, and Accessories
in the case of Adventure Works. Ultimately, these implementations
serve to align the different business units on common corporate
goals while also providing a rich set of insights relevant to each
business unit or organizational level.

Multiple datasets
A single dataset, AdWorksEnterprise, was utilized to support all
reports and dashboards in each of the three dashboard
architectures reviewed in the previous sections. This level of
integration is not technically necessary and there are valid
scenarios where multiple datasets could be used in the same
Power BI solution and even by the same dashboard. However,
additional or multiple datasets can quickly create problems due
to separate data refresh processes, separate data source
dependencies, and separate data security rules to implement.

Additionally, version control issues can arise as each dataset may
include differences in the structure and definitions of tables
common to both datasets. Moreover, the integration of visuals
from the separate dataset on a dashboard may be insufficient to
support analytical requirements.

In many cases, business users eventually need to analyze the data stored
in separate datasets in the same report. For example, viewing dashboard
tiles based on shipment and sales reports may be a helpful starting point
but ultimately a user will need to filter both tables by product category,
date, department, and other dimensions common to both business
processes. A Power BI report is always limited to a single dataset as its
source and thus an integrated dataset is always required whenever
cross-analysis is required.

As one use case for multiple datasets, an organization may not
have a particular data source, such as an Oracle database,
integrated into its data warehouse system (for example,
Teradata) but still wish to provide essential visualizations of this
data in Power BI to supplement other reports and dashboards.
In this scenario, a Power BI dataset could be built against the
Oracle database, and reports utilizing this dedicated dataset

could then support one or multiple dashboards. Once the
necessary data warehouse integration was completed, the
dedicated dataset could be retired and its reporting replaced
with new reports based on an Analysis Services model (which
uses Teradata as its source) that supports other Power BI
reporting content for the organization.

The import versus DirectQuery dataset decision described earlier in this
book significantly impacts the need for multiple datasets. For example, if
the default import mode is used, a BI team could choose to load the
separate data source (for example, Oracle) into the same dataset
containing data from Teradata or another source. If a DirectQuery
model was created, however, this model would be limited to its own
source and database thus implying a separate dataset to support the
Oracle database source.

In other scenarios, a dataset is chosen (or was already
implemented) for one or a few business processes that aren't
closely related to other business processes. For example, one
dataset was built to include sales- and marketing-related data,
while a separate dataset includes inventory and shipment data.
The reasoning for this isolation may have been that the users of
each dataset don't need access to the other dataset or that a
large, integrated dataset would be complex to develop and use.

For example, it's not uncommon for datasets with multiple fact
tables to require hundreds of DAX measures and Power BI
Desktop currently doesn't support display folders or
perspectives, such as Analysis Services, to help simplify the user
interface. Additionally, if the Power BI Premium capacity is not
available and Power BI datasets are used, the 1 GB file limit
could force a team to utilize separate Power BI files to store the
required data.

In general, corporate BI projects should limit the use of multiple
datasets for the reasons described and the long-term value of a
centralized data store. However, in environments lacking a data
warehouse and other scalable resources, such as an Analysis

Services instance or Power BI Premium capacity, multiple
datasets can be considered as an option and potentially the only
option to support one or multiple dashboards in the same Power
BI solution.

Dashboard tiles
Most dashboard tiles are created in the Power BI service by
pinning a visual, image, or shape from a report to a new or
existing dashboard in the same app workspace. However,
dashboard tiles can also be created by adding a tile directly from
the dashboard itself and by pinning from an Excel Workbook or
an SSRS report.

With a report open in the Power BI service, hovering over the
top-right corner of a visual exposes the Pin visual icon, per the
following image from the Global Reseller Sales report:

Pin visual icon for report visual

Report visuals can be pinned to dashboards from both the
Reading view and the Editing view. The preceding image is from
the Reading view, but clicking the Edit report button next to the

File and View drop-downs menus opens the Editing view.
Reports generally open by default in the Reading view, and the
Editing view is only available to the user who created the report
or members and admins of the app workspace for the report,
such as AdWorks Enterprise Sales in this example.

The following URL from MS Docs provides a complete
comparison of the functionality differences between the Reading
view and Editing view for Power BI reports http://bit.ly/2HztVsY.

Power BI Desktop is always in the Editing view and offers more report-
editing functionality than the Editing view in the Power BI service, such
as the ability to write DAX-measure expressions scoped to the specific
report. Additionally, since reports created in the Power BI service cannot
be downloaded as PBIX files, almost all report creation and edit
activities occur in Power BI Desktop. Dashboards, workspaces and all
content distribution options, such as Power BI apps are configured in the
Power BI service, described in later chapters.

Once pinned to the dashboard, several options are available for
configuring tiles depending on the type of tile and the content it
contains. In the Global and Europe sales dashboards described
in previous sections, for example, a subtitle was added to each
tile (for example, France) and custom links were applied to allow
direct navigation from the Global dashboard to the Europe
dashboard.

SSRS 2016, and later versions, support integration with the Power BI
service. Once integration has been configured in the Report Server
Configuration Manager, certain SSRS report items, such as charts and
maps, can be pinned to Power BI dashboards. A reporting services
subscription is automatically created for pinned report items to manage
the data refresh of the dashboard tile.

The Power BI publisher for Excel add-in, available for Excel 2007 and
later, allows users to pin Excel ranges and objects, such as pivot tables
and charts, directly from Excel workbooks to dashboards. This add-in
includes the ability to update pinned items and to connect to published
datasets in the Power BI service to create pivot-table Excel reports.
Additionally, ranges within Excel workbooks uploaded to the Power BI

http://bit.ly/2HztVsY

service can also be pinned to dashboards.

The details of creating SSRS and Excel-based dashboard tiles is beyond
the scope of this chapter. However, several examples of these
integrations were included in the Microsoft Power BI Cookbook (https://www

.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook). Additionally, the

Power BI Report Server, which includes the full SQL Server Reporting
Services functionality, is described in Chapter 16, Deploying the Power BI

Report Server.

Dashboard tiles can be thought of as snapshots of a specific
visual and filter context. When a visual is pinned from a report to
a dashboard, the specific filter context (for example, slicers,
page-level filters), visualization, and formatting at that time are
captured by the dashboard. Subsequent changes to the report,
such as a modified filter or a different visualization type, are not
reflected by the dashboard tile. The dashboard tile will, however,
continue to reflect the latest data refreshes of the underlying
dataset. Additionally, by default, the dashboard tile will continue
to be linked to the report from which the visual was pinned.

To maintain the synchronization between report visuals and
dashboard tiles, changes to reports that impact the pinned
visuals require the updated report visual to be pinned again. The
existing dashboard tile, reflecting the original filter context and
visualization, can be deleted. One exception to the snapshot
behavior of dashboard tiles is live report pages, as described later
in this chapter.

One exception to the snapshot behavior of dashboard tiles is live report
pages. When an entire report page has been pinned as a single tile to a
dashboard, any changes to the report page are automatically reflected
on the dashboard as well. The Live report pages section later in this
chapter includes additional details and an example.

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Tile details and custom links
Custom links are an important component of multi-dashboard
architectures, and particularly the organizational dashboard
architecture described in the previous section. In the absence of
custom links, clicking a dashboard tile opens the report page
from which the visual was pinned to the dashboard. Custom
links allow BI teams to take control of the navigation experience
and enable users to navigate directly to another dashboard with
related information or even to an external site, such as a team
site on SharePoint Online.

Tile details can be accessed by hovering over the top-right corner
of a dashboard tile, clicking the ellipsis, and then selecting Edit
details. In the following image from the Tile details window, a
Subtitle (Europe) is added to one of the Total Net Sales vs. Plan KPI
tiles:

Tile details

Additionally, per the preceding Tile details image, the Set custom
link property has been enabled and the Europe Sales
(dashboard) has been selected for the target of the link. Clicking
Apply at the bottom of the dialog (not included in the preceding
screenshot) confirms the selection. Different options are

available in the tile details window for widgets added directly on
the dashboard (not pinned), such as text boxes and images, per
the following section.

Images and text boxes
In addition to pinning custom images with text, as described in
the Supporting tiles section, it may be necessary to add
supporting widget tiles directly on the dashboard. These widgets,
created via the Add tile icon above each dashboard, can include
web content, images (via URL), text boxes, video, and real-time
data.

The following three tiles represent the video, image, and text box
widgets created via the Add tile functionality:

Image and text box tiles

The tile details for the video and image flag include a required
URL input box to reference. For the video, the URL must
reference either YouTube or Vimeo. Other common tile details
can be configured as well, including title, subtitle, and a custom
link. Likewise, the video widget tile includes a required video
URL to either Youtube or Vimeo (https://vimeo.com/210508392).

The text box tile supports common text formatting options as

https://vimeo.com/210508392

well as hyperlinks, per the following image:

In the preceding text box, hyperlinks are provided to IS Support,
a company data and analytics site, and a data governance site. A
common text box with essential links to documentation and
support can be applied to all corporate BI-supported
dashboards.

SQL Server Reporting Services
SSRS 2016, and later versions as well as the Power BI Report
Server, supports integration with the Power BI service. Once
integration has been configured between the on-premises report
server and the Power BI tenant, certain SSRS report items, such
as charts and maps, can be pinned to Power BI dashboards.
Additionally, a reporting services subscription is automatically
created for pinned report items, allowing for report server
administrators to manage the data refresh schedule of the
dashboard tile.

In the following image of the Report Server Configuration
Manager, a Power BI Report Server has been configured:

Power BI integration with Power BI Report Server

In the preceding image, the Power BI Report Server
(PBIRS) instance installed on the ATLAS server has been
configured for integration with the Power BI service. The same
Power BI integration is available for SQL Server Reporting
Services 2016 and 2017 via the same interface in the Report
Server Configuration Manager. The following documentation
includes all the requirements for integration with the Power BI

service as well as technical details on the integration and pinning
process http://bit.ly/2CnCkOU.

As described in Chapter 16, Deploying the Power BI Report Server, the
Power BI Report Server includes all the functionality of the SSRS,
including paginated (RDL) reports, report subscriptions, folder security,
and the reporting services web portal. Power BI Report Server, however,
provides several additional features and benefits, with the ability to view
and interact with Power BI reports (PBIX files) topping this list.

In the following image from the Power BI Report Server web
portal, a paginated (RDL) report containing a map has been
opened:

Pin to Power BI icon in Power BI Report Server

http://bit.ly/2CnCkOU

Selecting the Pin to Power BI Dashboard icon in the top-right
window prompts the user to select the specific report item to pin.
In this report, the map is selected and this launches the following
dialog for identifying the dashboard in the Power BI service as
well as defining the refresh schedule of the tile:

Pin SSRS item to Power BI Dashboard

In this example, the map is pinned to the Customer Distribution
dashboard in the Corporate Sales app workspace. The Daily, Hourly,
and Weekly tile refreshes can be configured via the Frequency of
updates drop-down menu and this setting defines the report
subscription supporting the tile. Report subscriptions can be
managed via the My Subscriptions (Settings | My Subscriptions)
interface on the Reporting Services web portal.

App workspaces replaced group workspaces in 2017 and are utilized by
Power BI Pro users to create and manage content. App workspaces and
related topics (for example, version control) are explained in Chapter 14,

Managing Application Workspaces and Content.

Unlike visuals from Power BI reports, which can only be pinned
to dashboards in the workspace of the given report, SSRS report
items can be pinned to any dashboard in any workspace. In the
following image from the Power BI service, the dashboard tile
reflecting the pinned SSRS report item has been moved and
sized to the top-left corner of the canvas:

SSRS report item as Power BI Dashboard tile

By default, the SSRS-based dashboard tile is linked back to the
on-premises SSRS report. This link, as well as the title and
subtitle for the tile, can be modified via the Tile details window
like other dashboard tiles.

Paginated SSRS reports (RDL files) created with SQL Server
Data Tools (SSDT) for Visual Studio or SQL Server Report
Builder cannot currently be published to the Power BI service.
However, just as Power BI reports (PBIX files) can now be
published to the Power BI Report Server, the Power BI and
Reporting Services teams have advised that support for RDL files
in the Power BI service is planned. Once this is accomplished,
the three primary Microsoft report types (Power BI, Excel, and
SSRS) will all be available in both the Power BI cloud service as
well as on-premises via the Power BI Report Server.

Additional information on the Power BI Report Server including the
deployment and scheduled refresh of Power BI reports is included in Chapte
r 16, Deploying the Power BI Report Server.

Excel workbooks
The Power BI Publisher for Excel add-in, available for Excel
2007 and later, allows Power BI Pro users to pin Excel ranges
and objects, such as pivot tables and charts, directly from local
Excel workbooks to Power BI dashboards in app workspaces.
This add-in includes the ability to update pinned items and to
connect to published datasets in the Power BI service to create
pivot-table Excel reports. Additionally, report content from Excel
workbooks published to the Power BI service can also be pinned
to dashboards.

Scheduled data refreshes can be configured in the Power BI
service for Excel workbooks containing data models. However,
given the size limitations of Excel data models as well as the
additional capabilities of Power BI reports, such as custom
visuals, role security, and advanced analytics, it's generally
recommended to migrate Excel data models to Power BI datasets
(PBIX files). Per the following image, the Power BI content
contained in an Excel workbook can be imported to a Power BI
Desktop file:

Import Excel to Power BI

The migration process includes the data retrieval M queries, data
model tables and relationships, DAX measures, and even any
Power View report pages contained in the source workbook.

Only when Excel reports are deeply dependent on Excel-specific
functionality, such as worksheet formulas and customized conditional
formatting rules, should the model not be migrated to Power BI. Power
BI Desktop's enhanced table and matrix visuals and conditional
formatting options now support many of the most common Excel report
use cases. Therefore, the usually limited effort is required to develop the
equivalent or a preferable report in Power BI Desktop relative to Excel.

In the following image, the filtered Excel pivot table is pinned to
the Customer Distribution dashboard in the Corporate Sales
workspace via the Power BI Publisher for Excel:

Pin Excel content to Power BI Dashboard

Just like SSRS report items, Excel content can also be pinned to
any dashboard in any workspace in the Power BI service.
However, when pinning from a local workbook, such as this
example, the owner of the Excel workbook is responsible for
updating the dashboard tile with any data refreshes or changes
in filter conditions. The push updates from the user's workbook
to the dashboard in the Power BI service can be executed via the
Pin Manager dialog. This interface, which also provides visibility
to pinned Excel items in any workspace, is accessed via the
Power BI ribbon of the Power BI Publisher for Excel add-in, per

the preceding image.

In the following image of the Customer Distribution dashboard,
a custom title and subtitle have been applied to the tile
containing the pinned Excel pivot table:

Power BI Dashboard with Excel and SSRS content

Also like SSRS-based dashboard tiles, the details of dashboard

tiles containing Excel content can be configured, including title,
subtitle, and a custom link. Moreover, Excel and SSRS
dashboard tiles can also be included in dashboard layouts
dedicated to consumption via smartphones. The Mobile-
optimized dashboards section later in this chapter describes this
feature.

Although Excel and SSRS report content are not designed to be
as visually engaging as Power BI visuals, the ability to leverage
these common reporting tools and to consolidate their distinct
content on the same dashboard is a unique capability of Power
BI. Additionally, the data refresh of Excel workbooks containing
external connections to sources, such as Power BI datasets and
Analysis Services data models, is a highly requested feature that
may be delivered by the fall of 2018.

Per the following image, only workbooks containing data models
can currently be refreshed:

External workbook connections not supported

Given this current limitation, the two slicers above the pivot
table (Country, Calendar Year Status) from the earlier example cannot
be used in the Power BI service. This is because the Excel report
was based on a connection to a published Power BI dataset via
Power BI Publisher for Excel.

The details of developing SSRS and Excel-based content as complements
to a Power BI solution is beyond the scope of this chapter. However,
several examples of these integrations, as well as considerations in
choosing among the three tools, were included in the Microsoft Power BI
Cookbook (https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookboo
k).

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Live report pages
For some users, the self-service data exploration experience
provided within Power BI report pages is the most valuable use
case of Power BI content. Although a dashboard of tiles may
initiate or contribute to an analysis, these users often have more
complex and unpredictable analytical needs such that greater
flexibility is needed. Additionally, these users are generally much
more comfortable and experienced in interacting with Power BI
content, such as modifying slicer selections and drilling up and
down through hierarchies.

To provide both the self-service experience of a report page as
well as the consolidation benefits of a dashboard, an entire
report page can be pinned as a single tile to a dashboard. In the
following dashboard for the United States, a live report page of
eight visuals has been pinned to supplement the corporate
standard KPI tiles:

Dashboard with live report page

In this dashboard, the user can leverage the robust filtering
options on the sales and margin live page to explore the dataset
while maintaining visibility to standard metrics via the top six
tiles. In the preceding example, the user has filtered on the
Southwest sales territory region, the second and third quarters of
the year (2017-Q2 and 2017-Q3), and also selected the Bikes
product category via the bar chart. These selections impact the
other five visuals on the page via either highlighting, in the case
of the Net Sales by Calendar Month column chart, or filtering, in the
case of the other four visuals. Filter selections on the live page do
not, however, impact the dashboard tiles outside of the live
page.

Defining the interaction behavior between visuals, such as switching
between highlight and filter, is described in the Visual interactions
section of Chapter 11, Creating and Formatting Power BI Reports.

Like standard dashboard tiles, a live page tile can be moved
around the canvas and the title and subtitle can be configured via
the Tile details window. However, custom links cannot be
configured for live report pages. In the United States dashboard
example, the report page itself included a textbox with a title and
thus the display title and subtitle property of the dashboard tile
has been disabled.

Unlike the snapshot behavior of normal dashboard tiles, any
saved changes to the report containing the live report page, such
as a different filter condition, are automatically reflected by the
live page tile on the dashboard. This automatic synchronization
avoids the need to delete dashboard tiles reflecting the original
state of the report and re-pinning visuals to reflect changes in the
source report.

Just like individual visuals within reports, a report page can be
pinned from both the Reading view and the edit mode in the

Power BI service. The Pin Live Page menu icon, next to the
refresh icon in Reading view, generates the following window:

Pin Live Page

Live report page tiles can also be included in mobile-optimized
views of dashboards. However, given their size, live pages are
generally more valuable in larger form factors and with full
screen mode.

Mobile-optimized dashboards
Just like the phone layout view in Power BI Desktop described in
Chapter 11, Creating and Formatting Power BI Reports, the Power
BI service provides a phone view to customize a mobile-
optimized layout for dashboards. With a phone view configured
for a dashboard, the specific tiles, sizes, and order of tiles defined
for the phone view will be presented to the user when the
dashboard is accessed via the Power BI mobile app on their
phone.

The Phone view can be accessed via the drop-down menu of Web
view in the top-right corner of the dashboard, per the following
image:

Dashboard Phone view

Once in Phone view, the same drag and resize options available
in phone layout for Power BI Desktop are also available for the
dashboard. In the following example, the three most important
total net sales KPI visuals from the Global Sales dashboard have
been positioned at the top of the phone view (Global, North
America, Europe) and several less important tiles have been
unpinned:

Phone view of dashboard in Power BI service

Power BI saves the phone layout automatically and the defined
Phone view will be the new default view for phones accessing the
dashboard. However, the user can still turn their phone sideways
to view the dashboard in the standard web view.

The subtitles applied to the dashboard tiles are particularly
valuable in Phone view. In the standard web view, the four
supporting tiles with custom images (Global, North America,
Europe, Pacific) make it easy to determine the scope of each tile.
These image tiles are likely not, however, desired in Phone view
and thus the subtitles can be relied on to convey the scope of
each tile.

Summary
This chapter demonstrated how dashboards can be planned and
developed as part of a large, integrated corporate BI solution. All
essential features and processes of Power BI dashboards were
highlighted, including the configuration of dashboard tiles, their
links to other dashboards and reports, and mobile-optimized
dashboards. Additionally, the unique capability of dashboards to
integrate BI content from the SSRS reports and Excel workbooks
was reviewed.

The next chapter transitions from the development of Power BI
content to the management of Power BI content. This includes
the application of version control to Power BI Desktop files and
the migration of content across test and production
environments with app workspaces.

Managing Application
Workspaces and Content
The preceding six chapters have focused on the design and
development of Power BI datasets, reports, and dashboards.
While the creation of impactful and sustainable content is
essential, this chapter reviews the processes and features that IT
organizations can leverage to manage and govern this content
through project life cycles and ongoing operational support. This
includes application workspaces in the Power BI service, staged
deployments between test and production environments, and
maintaining version control of Power BI Desktop files.
Additional features and practices highlighted in this chapter
include data classifications for dashboards, documenting Power
BI datasets, and utilizing the Power BI REST API to automate
and manage common processes.

In this chapter, we will review the following topics:

Application workspaces

Workspace roles and rights

Staged deployments

Power BI REST API

OneDrive for Business version history

Source control for M and DAX code

Dashboard data classifications

Dataset field descriptions

Metadata reporting

Application workspaces
Application workspaces are containers in the Power BI service of
related content (reports and dashboards). As a Power BI Pro
feature as discussed in the Power BI licenses section of Chapter 7,
Planning Power BI Projects, members of application
workspaces, are able to create and test content, such as new
dashboards and changes to reports, without impacting the
content being accessed by users outside of the workspace. Once
the new or revised content in the workspace is determined to be
ready for consumption, the workspace can be published or
updated as a Power BI app, as described in Chapter 17, Creating
Power BI Apps and Content Distribution.

"We intend workspaces just for creation...it's the place where content gets created in
Power BI."

– Ajay Anandan, Senior Program Manager.

In addition to the default isolation or staging between content
creation (workspaces) and content consumption (apps), BI
teams can utilize multiple app workspaces to stage their
deployments as per the Staged deployments section later in this
chapter. For example, reports and dashboards can be initially
created in a development workspace, evaluated against
requirements in a test workspace, and finally deployed to a
production workspace. The production app workspace would
support the app which large numbers of business users would
access and therefore could be assigned to Power BI Premium
capacity to provide dependable performance and the flexibility to
scale resources according to the needs of the workload.

Chapter 19, Scaling with Premium and Analysis Services, provides details on
the features and benefits of Power BI Premium. These include the cost
advantage of capacity-based pricing versus per-user licensing in large-

scale deployments, managing Premium capacities (hardware), such as
scaling up or out, and assigning workspaces to Premium capacities.
Additional capabilities exclusive to content stored in Premium capacity,
such as incremental data refresh, larger Power BI datasets, and more
frequent scheduled data refreshes (for example, every 30 minutes), are
also described in Chapter 19, Scaling with Premium and Analysis Services.

The following diagram and four-step process depicts the
essential role of app workspaces in the life cycle of Power BI
content:

App workspaces and apps

1. A Power BI Pro user creates an App Workspace and
adds other Power BI Pro users as members with edit
rights

2. The members of the App Workspace publish reports to
the workspace and create dashboards in the workspace

3. All content or a subset of the content in the App
Workspace is published as a Power BI app

4. Users or groups of users access content in the published
app from any device

All users within the app workspace will need a Power BI Pro

license. All users consuming the published Power BI app will
also need a Power BI Pro license, unless the app workspace
has been assigned to Power BI Premium capacity. If the app
workspace has been assigned to Power BI Premium capacity,
users with Power BI (free) licenses and, optionally, external
guest users from outside the organization with free licenses, can
read or consume the Power BI app. As described in Chapter 19,
Scaling with Premium and Analysis Services, it is, of course,
necessary to provision the appropriate resources (for example,
CPU cores and RAM) to support the workload generated by the
Power BI app.

In small team scenarios (5–15 users) in which maximum self-service
flexibility is needed, all users can be assigned Pro licenses and
collaborate on content within the app workspace. This approach negates
the isolation benefit of workspaces from apps but provides immediate
visibility to the latest versions of the content. Additionally, Power BI Pro
users within the workspace can create their own Power BI and Excel
reports based on connections to the published dataset in the workspace.

Workspace roles and rights
Every app workspace has one or multiple administrators who
manage the access of other Power BI Pro users to the workspace.
The user who initially creates the app workspace is the
workspace admin by default and can add other users as members
of the workspace, thus providing access to the datasets contained
in the workspace. With the privacy level of the workspace set to
allow members to edit content, workspace members can create
and store content in the workspace as well as publishing content
from the workspace to a Power BI app.

Workspace admins
Workspace admins can modify the name of the workspace, the
privacy level for workspace members (edit or view only), and the
role of each member (admin or member). For example, once
users have been added to the workspace as members, the
workspace admin can revise the role of one or multiple users
from members to admins so that this user(s) can add other
members and contribute to the management of the workspace.

If Power BI Premium capacity has been provisioned for the
organization and if the workspace administrator has been
granted assignment permissions to Premium capacity, the
workspace admin can assign the workspace to a Premium
capacity. This action moves the content in the workspace to
dedicated hardware (capacity) exclusive to the organization and
enables many additional features, such as the distribution of
apps to Power BI free users. Further information on the
assignment of app workspaces to Power BI Premium capacity is
included in Chapter 18, Administering Power BI for an
Organization. The additional capabilities provided by Power BI
Premium and considerations in allocating Premium capacity are
included in Chapter 19, Scaling with Premium and Analysis
Services.

Workspace admins also have the exclusive right to delete an app
workspace and thus remove all of its content (dashboards,
reports, and datasets) from the Power BI service. Additionally,
workspace admins can only leave an app workspace if another
user has been assigned as an admin of the workspace.

Prior to deleting an app workspace, check to see if an app has been

published from the workspace. If an app has been published, unpublish
this app via the ellipis (three dots) next to the Update app button. If the
app workspace has been deleted but the published app has not been
unpublished, users of the published app will see errors when attempting
to access or refresh its content.

The following screenshot displays the app workspace options
available to a workspace administrator:

App Workspace options for workspace admin

The Edit workspace dialog, as illustrated in the following section,
is exclusively available to workspace administrators. Workspace
members (non-admins) with edit rights, however, can also
update and unpublish apps as well as leave the app workspace.

Workspace members
The members added to the workspace are most commonly report
authors who will connect to dataset(s) to develop reports in
Power BI Desktop. These reports can then be published back to
the app workspace and their visuals can be pinned to dashboards
in the Power BI service as per the previous Chapter 13, Designing
Power BI Dashboards and Architectures.

Since app workspaces have a one-to-one relationship with Power
BI apps, workspace administrators are often familiar with the
users or groups of users who will consume the content as well as
other subject matter experts, such as the dataset designer
described in the Project roles section of Chapter 7, Planning Power
BI Projects.

In the following screenshot, Jennifer has created an app
workspace and added Mark as a member with edit rights:

Edit app workspace

The Edit workspace dialog is exclusive to workspace admins. In
this example, Mark's edit rights as a member may be sufficient or
Jennifer can revise Mark's role from Member to Admin so that
he can also add other members. A security group in Azure Active
Directory cannot be used to add members to a workspace.
However, security groups can be referenced when publishing an
app workspace as a Power BI app to enable groups of users to
view the content of the workspace.

In almost all scenarios, only users who create and manage Power BI
content are added as members of app workspaces. However, if a report

page from the app workspace is going to be embedded in a SharePoint
Online site, the members of the SharePoint Online site will need to be
added as members of the app workspace. Both Power BI Pro and Power
BI free users can view embedded Power BI content from SharePoint
Online. In the case of Power BI free users, however, the app workspace
containing the embedded content needs to be assigned to Power BI
Premium capacity. Additional information on embedding Power BI
content in SharePoint Online is included in Chapter 17, Creating Power BI
Apps and Content Distribution.

Users with Power BI free licenses can technically be added to app
workspaces via the Edit workspace dialog. The free user will see
the name of the app workspace in the Power BI service but the
following dialog will be prompted when trying to access the
workspace:

Power BI free user attempting to access an app workspace

The preceding dialog is also prompted to free users when trying
to utilize other Power BI Pro features, such as sharing a
dashboard, accessing a shared dashboard from shared (non-
Premium) capacity, or creating an email subscription to a report
or dashboard.

Administrators of Power BI deployments have the ability to view the
creation of Pro trial versions via the Office 365 audit logs. For example, a
user assigned to the Power BI admin role (a role in Office 365), could
analyze the level of activity for Pro trial users and assign available Pro
licenses. Additionally, the process of assigning Pro licenses to users can
be automated via PowerShell scripts so that administrators can focus on
other governance and security issues. The Office 365 audit logs and
options for accessing this data is described in Chapter 18, Administering
Power BI for an Organization.

My Workspace
All Power BI users, including those with free licenses, are
assigned a My Workspace in the Power BI service. This
workspace should only be used and thought of as a private
scratchpad for content specific to the individual user. My
Workspace can be accessed via the same Workspaces menu as
APP WORKSPACES, as shown in the following screenshot:

My Workspace

Any Power BI content which requires access by other users
should be stored in an app workspace and distributed from the
app workspace. Although My Workspace can host the same
content types as APP WORKSPACES, any content distributed
from My Workspace, such as via the dashboard sharing feature
described in Chapter 17, Creating Power BI Apps and Content

Distribution, is dependent on the individual user's account.
Additionally, Power BI apps are exclusive to APP WORKSPACES
and the Power BI team has advised that future administration
and governance features will also be exclusive to APP
WORKSPACES.

The Power BI team has advised of a future setting in the Power BI admin
portal allowing administrators to disable the My Workspace for Power
BI free users. If enabled, Power BI free users would only see the four
consumption-related menu items (Favorites, Recent, Apps, Shared with
me) and the user experience for these items will remain simple and
intuitive. Application workspaces, denoted by the darker shading, will
increasingly contain more options for report authors and content
creators to customize their solutions.

Staged deployments
Multiple application workspaces and their corresponding apps
can be used to stage and manage the lifecycle of Power BI
content. Similar to the development, test, and production release
cycles familiar to IT professionals, staged deployments in the
Power BI service are used to isolate data, users, and content
appropriate to each stage of the process. Effectively
implementing a staged Power BI deployment serves to raise the
quality of the content delivered as well as the productivity of
project team members.

The following diagram and nine-step process describe the
primary elements of a staged deployment lifecycle:

Staged deployment lifecycle

1. A development app workspace is created and Power BI
content is built into the workspace:

A Power BI Desktop file containing the dataset is
published to the development workspace

Reports are developed in Power BI Desktop based
on Live connections to the development
workspace dataset

Dashboards are created within the development
workspace in the Power BI service

2. An app is published or updated and made available to a
small number of users for their review

3. The BI manager or project lead reviews the status of
content being developed and provides feedback to the
developers:

In other scenarios, certain business stakeholders
are allowed early access to content under
development

4. The Power BI REST API is used to migrate completed
content from the development workspace to the test
workspace:

Supported REST API operations, such as a clone
report and a rebind report, are called via
PowerShell scripts

5. A TEST App is published or updated and made available
to a small number of users for their review

6. A user acceptance testing (UAT) user or team
reviews the content relative to requirements and provides
feedback:

If necessary, revisions are implemented in the
TEST Workspace and the TEST App is
updated for further review

7. The Power BI REST API is used to migrate approved
content from the TEST Workspace to the production
workspace:

Supported REST API operations, such as a clone
report and rebind report, are called via
PowerShell scripts

8. A production app is published or updated and made
available to groups of users for their consumption:

Publishing and accessing apps is described in Chapt
er 17, Creating Power BI Apps and Content
Distribution

9. Groups of business users access and consume the
dashboards and reports via the production app from any
device:

Measuring and monitoring the usage of the
published app is also described in Chapter 17,
Creating Power BI Apps and Content
Distribution

Creating and managing app workspaces as well as publishing
apps for testing or consumption are all simple processes that can
be handled via the user interface in the Power BI service.

Properly utilizing the Power BI REST API to copy or migrate
content across workspaces, however, requires some level of
custom scripting. IT organizations familiar with managing Azure
and on-premises resources via Windows PowerShell can leverage
these skills as well as sample scripts provided by the Power BI
team as per the Power BI REST API section later in this chapter.

Workspace datasets
As per the staged deployment lifecycle diagram, this architecture
requires distinct Power BI datasets per app workspace. To
minimize resource usage and for data security reasons, the
development workspace dataset could include the minimal
amount of data necessary and exclude all sensitive data. This
would allow the organization to comfortably provide
development access to teams of content developers, potentially
from outside of the organization. Access to the test workspace
could be limited to a small number of trusted or approved users
within the organization and thus could include sensitive
data. Finally, the production workspace dataset would have the
same schema as the other datasets but include the full volume of
data as well as sensitive data.

If a common schema exists between the different datasets in
each workspace, the source dataset of a Power BI Desktop report
file can be revised to a dataset in a separate workspace as per the
Switching source datasets section in Chapter 11, Creating and
Formatting Power BI Reports.

For example, the report file (.pbix) approved for migration from
the development workspace to the test workspace could be
opened, modified to reference the test workspace dataset, and
then published to the test workspace. This approach represents a
manual alternative to the Power BI REST API described in the
following section.

A new feature is expected in 2018 that will allow a Power BI
report to reference a dataset in an external app workspace. The

availability of this feature will help eliminate the resource cost
and manageability issues of duplicated datasets across multiple
app workspaces.

For example, distinct Power BI apps developed for the finance,
sales, and marketing teams could all leverage a single production
dataset in a dedicated workspace rather than individual datasets
within each workspace. The availability and implementation of
this feature will revise the architecture of staged deployments of
Power BI content via large Power BI datasets.

Another alternative to avoid the duplication of a dataset across
multiple apps is Analysis Services. With Analysis Services, either
on-premises via SSAS or in the cloud via AAS, Power BI reports
can be created with Live connections to development, test, and
production data models. Information on utilizing Analysis
Services and its advantages as the data modeling tool and engine
for Power BI is included in Chapter 19, Scaling with Premium and
Analysis Services.

Power BI REST API
The Power BI REST API provides programmatic access to
resources in the Power BI service including content (datasets,
reports, and dashboards), application workspaces, and the users
of these resources. This access enables organizations to automate
common workflows, such as cloning a report to a different
workspace or triggering a dataset refresh operation via familiar
tools, such as Windows PowerShell. The goal of the REST API is
to fully support all functionality available in the Power BI
service, including capabilities exclusive to the Power BI admin
portal, thus providing complete administrative and automation
capabilities. The following URL provides updated
documentation on the REST API including the request syntax
and a sample result set for each operation: http://bit.ly/2AIkJyF.

As more REST API operations are developed, they will initially
be exposed exclusively via REST API calls. This allows
organizations comfortable with the programmatic interface to
get started with automation scripts and for a user interface to be
developed on top of the API operations. The following sections
describe the components needed to get started with the REST
API, including the ID for a registered application, the IDs for
core Power BI objects, and sample PowerShell scripts provided
by the Power BI team.

Windows PowerShell is a task-based command-line shell and scripting
language. It's primarily used by system administrators to automate
administrative tasks. For example, PowerShell script files (.ps1) are
commonly used in scheduled data refresh processes for SSAS models.

http://bit.ly/2AIkJyF

Client application ID
To use the Power BI REST API, a client application ID must be
obtained by registering an application with Azure Active
Directory. This registration can be completed via the four-step
process at the following portal: https://dev.powerbi.com/apps:

1. Sign in with the Azure Active Directory account:

This is the account used for logging into the
Power BI service

2. Describe the application being registered:

Provide an application name and Home Page URL

Select Native app from the App Type dropdown

Use the following Redirect URL:
urn:ietf:wg:oauth:2.0:oob

3. Choose the Power BI APIs to access:

Select all available boxes (Dataset APIs, Report
and Dashboard APIs, and Other APIs)

https://dev.powerbi.com/apps

4. Click Register App

Once the app is registered, the Client ID required for
authentication will be exposed at the bottom, as shown in the
following screenshot:

Power BI app Registration portal

Alternatively, an application can be registered via the App
registrations menu of Azure Active Directory. Registered
applications can be managed in the Azure portal, as shown in the
following screenshot of the Frontline Power BI Automation app:

Registered app in Azure Active Directory

In addition to the Application ID property, which is the Client ID
to use for authentication, the Required permissions menu in
Azure Active Directory provides access to all Power BI APIs
including those currently in preview. For example, the
permissions of the Frontline Power BI Automation app from the
preceding image could be expanded to include the view all
reports API currently in preview.

Workspace and content IDs
In addition to the client ID of the registered application, the
REST API operations require an ID associated with the given
object or collection of objects referenced by the API operation.
For example, to clone a report to a separate app workspace and
then bind the report to a dataset in the new workpace, the IDs
(GUID values) associated with the report, the source and target
workspace, and the dataset must be obtained. These ID values
can then can be passed into the variables of PowerShell script
files and executed on demand or as part of a scheduled process,
such as with dataset refresh operations.

The IDs for Power BI objects can be obtained by executing
scripts which reference the appropriate REST API, such as Get
Reports. Alternatively, the necessary IDs can be found by
navigating to the specific object or collection of objects in the
Power BI service and noting the URL.

For example, to retrieve both the group ID and the dataset ID,
navigate to an app workspace and open the Settings menu for a
dataset, as shown in the following screenshot:

Access to dataset Settings

In this example, opening the Settings menu for the AdWorks
Enterprise dataset of the AdWorks Global Sales workspace results in the
following URL in the address bar of the
browser https://app.powerbi.com/groups/c738f14c-648d-47f5-91d2-
ad8ef234f49c/settings/datasets/61e21466-a3eb-45e9-b8f3-c015d7165e57

Based on this URL, the following two IDs can be used in
PowerShell scripts calling the REST APIs:

AdWorks Global Sales (app workspace): c738f14c-648d-47f5-91d2-
ad8ef234f49c

AdWorks Enterprise (dataset): 61e21466-a3eb-45e9-b8f3-c015d7165e57

Just as the terms groups and datasets precede the IDs for these
objects, respectively, the term reports precedes the ID for a
specific report the URL when a report is selected in the Power BI
service.

PowerShell sample scripts
Several self-documenting sample PowerShell scripts that
leverage the Power BI REST API are available at the following
GitHub repository https://github.com/Azure-Samples/powerbi-powershell.

As shown in the following screenshot, this repository includes
PowerShell scripts (.ps1 files) for the refresh of a dataset, the
rebinding of a report (to a dataset), and other common use cases:

Power BI REST API samples

In addition to Windows PowerShell or the PowerShell
Integrated Scripting Environment (ISE), Azure PowerShell
cmdlets must also be installed to execute the REST API scripts.
The following links can be used to install the necessary
components:

https://github.com/Azure-Samples/powerbi-powershell

Windows PowerShell: http://bit.ly/2FkaSmc

Azure PowerShell cmdlets: https://aka.ms/webpi-azps

The necessary cmdlets can also be installed from PowerShell via
the following commands:

Install-Module AzureRM
Install-Module AzureAD

The variables in each sample advise of the parameters needed to
successfully execute the script, such as the client ID of the
registered application. The following sample script includes a
variable for the client ID of the registered application described
earlier and a function for authenticating against Azure Active
Directory with this client ID:

$clientId = " FILL ME IN "
function GetAuthToken
{
 $adal = "${env:ProgramFiles}\WindowsPowerShell\Modules\AzureRM.profile\4.1.1\Microsoft.IdentityModel.Clients.ActiveDirectory.dll"
 $adalforms = "${env:ProgramFiles}\WindowsPowerShell\Modules\AzureRM.profile\4.1.1\Microsoft.IdentityModel.Clients.ActiveDirectory.WindowsForms.dll"
 [System.Reflection.Assembly]::LoadFrom($adal) | Out-Null
 [System.Reflection.Assembly]::LoadFrom($adalforms) | Out-Null
 $redirectUri = "urn:ietf:wg:oauth:2.0:oob"
 $resourceAppIdURI = "https://analysis.windows.net/powerbi/api"
 $authority = "https://login.microsoftonline.com/common/oauth2/authorize";
 $authContext = New-Object "Microsoft.IdentityModel.Clients.ActiveDirectory.AuthenticationContext" -ArgumentList $authority
 $authResult = $authContext.AcquireToken($resourceAppIdURI, $clientId, $redirectUri, "Auto")
 return $authResult
}
$token = GetAuthToken

The sample PowerShell script files can be edited to contain the
appropriate variable (for example, client IDs and group IDs) and
then saved to a secure network location. The user with rights to

http://bit.ly/2FkaSmc
https://aka.ms/webpi-azps

the Power BI resources, such as a BI manager or an IT
administrator assigned the Power BI admin role, can run the
PowerShell scripts as an administrator.

A top use case for the Power BI REST API is to synchronize the
data refresh of Power BI datasets with the refresh process of data
sources utilized by those datasets. For example, the refresh for
certain production datasets in the Power BI service can be
dynamically triggered to begin once the update process for a data
source is completed, such as a nightly data warehouse extract-
transform-load (ETL) or extract-load-transform
(ELT) process or job. This synchronization ensures that Power
BI reports and dashboards reflect the latest possible updates.

Additionally, the dynamic refreshes help to eliminate variances
between Power BI reports and dashboards and any reporting
tools which generate queries directly against the data source.
Data refresh synchronization, along with incremental data
refresh (expected in 2018), reduces one of the advantages of
DirectQuery datasets relative to import mode datasets.

The refresh dataset API requires the group ID for the given app
workspace and the dataset ID. These values can be obtained manually as
per the Workspace and content IDs section earlier or via the Get Groups
and Get datasets API operations, respectively. The following URL
contains documentation on the Refresh dataset operation: http://bit.ly/2EpWLK
L

http://bit.ly/2EpWLKL

Dashboard data classifications
Dashboard data classifications allow administrators of Power BI
to define data security classifications for dashboards in the
Power BI service. Once configured in the Power BI admin portal,
Power BI Pro users responsible for creating and editing
dashboards in app workspaces can associate one of the available
classifications to each dashboard. Additionally, the classification
tags can be linked to external URLs to provide users with
additional information, such as the organization's definitions
and policies for each data classification.

The data security tags, such as Confidential or Public, serve to
raise awareness regarding the sensitivity of the content and thus
reduce the risk that protected data is inappropriately exposed or
distributed.

For example, an organization could allow certain security groups
of users to share Power BI content with users outside of the
organization but, as an organizational policy, require that this
content matches certain data classifications, such as public or
low business impact.

In the following screenshot from the Power BI admin portal, four
dashboard data classifications have been configured:

Dashboard data classifications

In the preceding example, the Organizational classification has
been defined as the default data classification. This setting
causes all new dashboards and any existing dashboard which
have not been assigned to a different classification to be tagged
as Organizational. For usability and reference purposes, a three-
letter shorthand acronym and a URL link to a corporate site have
been assigned to each classification, respectively.

The Power BI admin portal can be accessed via the Settings (gear) icon
in the top-right corner of the Power BI service. Only Office 365 global
admins or users mapped to the Power BI admin role will have visibility
to tenant settings within the Power BI admin portal, which includes data
classification for dashboards.

Chapter 18, Administering Power BI for an Organization, reviews the Power

BI admin role as well as the settings available in the Power BI admin

portal extensively. Additionally, the Power BI project roles section in Chapt

er 7, Planning Power BI Projects, introduces the Power BI admin role and

contains an example of assigning the Power BI service administrator
role to a user in the Office 365 admin center.

With the data classifications for the organization configured, a
user with edit rights to a dashboard can assign a classification via
the Dashboard settings menu, as shown in the following
screenshot:

Dashboard settings

In the preceding example for the Global Sales dashboard, the
default Organizational classification is switched to Confidential.
The Dashboard settings menu can be accessed from within a
dashboard by clicking the ellipsis (three dots) to the right of the

Web view/Phone view dropdown. Alternatively, the settings for a
dashboard can be accessed from outside the dashboard via the
gear icon in the ACTIONS group within the app workspace.

In the following screenshot, the shorthand tag of the Data
classification assigned to each dashboard is populated in the
workspace:

Dashboards in app workspace

Just like the icons under the ACTIONS group, hovering the
cursor over the CLASSIFICATION tag (for example, CON,)
creates a pointing icon and displays the full name of the
classification (Confidential) as a tool tip. Clicking the tag will
open the URL associated with the given classification in a
separate browser tab.

Data classifications are deleted if the feature is turned off in the Power
Admin Portal. Additionally, if a classification is removed, any
dashboards assigned to the removed classification will be assigned back
to the default until the dashboard owner changes the classification.
Finally, if the default classification is changed, all dashboards that
weren't already assigned a classification type will change to the new
default.

Given the importance of data security and the risk involved in re-

creating work for both the Power BI Admin(s) and report and dashboard
authors, the teams responsible for deploying Power BI should ensure
these classifications align with corporate data governance standards.

Version control
Version history and source control are very common, highly
valued elements of an IT organization's application lifecycle
management (ALM).

For example, changes to an Analysis Services data model, such
as new DAX measures, are typically committed to a source
control repository and tools such as Visual Studio Team
Services (VSTS) provide features for teams to manage and
collaborate on these changes. Perhaps most importantly, these
tools enable teams to view and revert back to prior versions.

Power BI Desktop files (.pbix) do not integrate with these robust
systems and are not expected to in the foreseeable future. As an
alternative, Microsoft recommends OneDrive for Business, given
its support for version history and its current 15 GB file size
limit. Additionally, for longer term and larger scale projects, BI
teams can optionally persist the core DAX and M code contained
in a dataset into a structure suitable for implementing source
control.

OneDrive for Business version
history
In the following screenshot, a Power BI Desktop file containing
an import mode dataset has been uploaded to a OneDrive for Business
folder:

OneDrive for Business file options

Selecting the ellipsis (three dots) exposes several file options

including Version history. As changes are implemented and
saved in the PBIX file, such as a revised DAX measure or a new
M query, the updated PBIX file could be uploaded to OneDrive for
Business. Given the same name as the existing file, OneDrive for
Business will require the user to confirm that the file should be
replaced, as illustrated in the following screenshot:

Uploading updated PBIX file

Once the replacement is confirmed, only the new file is
accessible from the folder but the prior file and other versions of
the file are still accessible via Version history. As shown in the
following screenshot, the Version History window makes it easy
to view the history of changes to a file and to restore an earlier
version:

File options in Version History

In this example, selecting the ellipsis (three dots) for the Version
1.0 row exposes three file options, including Restore. Selecting
Restore creates a new version (Version 4.0), which is an exact
copy of the file restored. This restored file replaces the current
file accessible in the OneDrive for Business folder. Finally, from the
standard folder view in OneDrive for Business, the Download option
displayed in the first image of this section can be used to retrieve
the restored PBIX file.

As described in the Live connections to Power BI datasets section in Chapter
11, Creating and Formatting Power BI Reports, reports should be created
with Power BI Desktop files rather than within the Power BI service to
enable Version history. However, as per the previous chapter,
dashboards are exclusively created within the Power BI service.
Therefore, while Version history can be maintained with datasets and
reports, Version history is currently not possible with dashboards.

Source control for M and DAX
code
Although the version history of M and DAX code within Power
BI Desktop files is technically available via OneDrive for
Business, some BI organizations may also choose to utilize more
robust version control tools on essential queries and measures.
For example, the M query used to retrieve the Customer
dimension table could be saved as a .pq file and synchronized
with a team project code repository in VSTS. This approach
would improve the visibility of the code to project team members
and, for M queries, provide the code editing benefits of
colorization and IntelliSense.

In the following screenshot, a Power Query project containing
multiple folders of PQ files (M queries) has been added to a
solution in Visual Studio and synchronized with a Git repository
in a VSTS project:

Power Query project in Visual Studio

In this example, all M queries (.pq files) are checked into source
control via the lock icon in the Solution Explorer window except
for the Customer query which is pending an edit (checkmark
icon). The revised Customer dimension table query would be
implemented within the Power BI Desktop file first but also
saved within the Power Query project in Visual Studio.

As an enterprise tool, many version control options are available
in Visual Studio, including Compare with Unmodified... and
Blame (Annotate). By clicking Commit, a message describing the

change can be entered and the updated file can be synced to the
source control repository in VSTS.

In the following screenshot from VSTS, the updated Customer
dimension query file (Customer.pq), including the latest commit
date (5 minutes ago), is visible:

Files view in VSTS

Given the additional maintenance overhead, enterprise source
control tools may not be suitable for smaller, simpler Power BI
projects or the very early stages of projects. In addition to sound
requirement gathering efforts, teams can minimize the
maintenance effort required of the version control project by
only including the essential M queries and DAX measures. For
example, only the DAX measures containing fundamental
business logic, such as the base measures described in Chapter
9, Designing Import and DirectQuery Data Models, could be
saved as (.msdax) files.

Metadata management
As Power BI projects grow to support more teams and business
processes, the dataset(s) supporting the reports and dashboards
for these projects will also grow. For example, integrating the
general ledger into the existing AdWorks Enterprise dataset would
require new fact and dimension tables, new relationships, and
additional measures with their own unique business rules or
definitions. Additionally, it's common for hundreds of DAX
measures to be built into datasets over time to support more
advanced analytics and address new requirements.

Given this added complexity, BI teams and specifically the
dataset designer described in Chapter 7, Planning Power BI
Projects can embed descriptions to aid report authors incorrectly
utilizing the data model. Additionally, the dynamic
management views (DMVs) for Analysis Services models can
be leveraged to generate metadata reports providing detailed
visibility to all essential objects of the dataset. The combination
of field descriptions and metadata reporting can help drive
consistent report development as well as facilitate effective
collaboration within the project team and between the project
team and other stakeholders.

Field descriptions
A FIELD PROPERTIES pane in the Report view of Power BI
Desktop allows dataset designers to enter descriptions for the
measures, columns, and tables of a dataset. This metadata is
then exposed to report authors who connect to this dataset as
they hover over these objects in the FIELDS list and within the
input field wells of visualizations. Although field descriptions are
not a full substitute for formal documentation, descriptions of
the logic, definition, or calculation of various objects enable
report authors to develop content more efficiently. For example,
rather than searching an external resource such as a data
dictionary or contacting the dataset designer, the report author
could simply hover over measures and column names from
within Power BI Desktop.

Creating descriptions
To create a description, open the Power BI Desktop file
containing the dataset and enable the FIELD PROPERTIES pane
under the View tab of the Report view. In the following
screenshot, the Internet Gross Sales measure is selected on the
FIELDS List and a sentence is entered into the description box of
the FIELD PROPERTIES pane:

FIELD PROPERTIES pane

Just like the preceding example with measures, selecting a table
or a column in the FIELDS list will expose the name of this
object and a description box in the FIELD PROPERTIES pane.
Table and column descriptions can be valuable but measures are
likely the best use case for this feature given the volume of
measures in a dataset and the variety of calculations or logic they
can contain.

Identify the most important measures in a dataset and apply concise,
consistent descriptions using business-friendly terms. The set of
measures described in the Base measures section of Chapter 10, Developing
DAX Measures and Security Roles,would represent good candidates for

descriptions as these measures are often reused in many other custom
measures, such as date intelligence measures. For example, it's essential
that the report author knows that the net sales measure includes
discounts while the gross sales measure does not.

Although the Name field in the FIELD PROPERTIES pane can
also be used to revise the names for measures, columns, and
tables, this is rarely necessary as these changes can be
implemented in other ways. Particularly for tables and columns,
the Power Query Editor described in Chapter 8, Connecting to
Sources and Transforming Data with M, should be used to
define table and column names.

It's likely that a future release of Power BI Desktop will expose the FIELD
PROPERTIES window to the Data view and/or the Relationships view as
well. Additionally, other metadata properties may be added to the
FIELD PROPERTIES pane, such as formatting and data categories,
giving dataset designers a more centralized and robust means to
configure dataset objects.

View field descriptions
The descriptions embedded in Power BI datasets can be viewed
in the FIELDS lists, the input field wells of visualizations, and
the FIELD PROPERTIES pane as well. With a Power BI report
based on a Live connection to a published Power BI dataset, as
described in the Live connections to Power BI datasets section
in Chapter 11, Creating and Formatting Power BI Reports, the
report author can view but not edit the descriptions.

In the following screenshot, the report author has built a matrix
visual and hovers over the Customer History Segment column used in
the Rows input field well:

Field description via visualization field wells

As shown in the preceding image, the report author can view the
description of the field (column or measure) via the tool tip to

understand the essential definition, such as first purchase date
relative to current date in this example. Likewise, the author can
also hover over the Internet Gross Sales measure in the Values field
well to view this description or hover over the measures,
columns, and table names in the in the FIELDS list, as shown in
the following screenshot:

Description of measure via FIELDS list

For the Internet Gross Product Margin measure and other measures in
the dataset, the description applied uses proper casing when
referring to DAX measures. This approach helps to keep each
description concise and advises the user of the other measures
they may need to review. In this example, the user may need to
hover over the Internet Gross Sales measure and/or the Internet Sales
Product Cost measure to fully understand the Internet Gross Product
Margin measure.

Although it's likely unnecessary, the report author can also view the
descriptions via the FIELD PROPERTIES pane. When the FIELD
PROPERTIES pane is enabled from a Live connection report, Power BI
Desktop advises that these properties are read-only given that they are
from a model stored outside of the Power BI Desktop file.

Field descriptions cannot be viewed by hovering over names or
values in the visuals themselves on the report canvas. However,
as per the Visualization formatting section of Chapter 11, Creating
and Formatting Power BI Reports, chart visuals contain a
Tooltips input field well that provide a very similar experience to
viewing field descriptions. Tooltips are typically used to display
DAX measures related to the measures in the visual, such as the
net margin percentage for a chart that visualizes net sales.

However, measures can also return text strings and, thus, if
necessary to aid the users viewing reports, measures can be
created containing field descriptions and utilized as Tooltips.

In the following screenshot, a DAX measure containing the
description of the Internet Gross Product Margin measure is used as an
input to the Tooltips field well:

Field description measure as tooltip

In the preceding screenshot, hovering over the individual
columns (or points if a line chart) displays the description built
into the dedicated measure (Internet Gross Product Margin
description). Although potentially useful for report consumers,
BI teams should be cautious that the DAX measures used for

descriptions are isolated from the actual field descriptions.
Therefore, in the event of a change in description, both the
description measure and the field description would need to be
updated. Additionally, if measures containing descriptions are
used extensively, a dedicated measure support table, as
described in Chapter 8, Connecting to Sources and Transforming
Data with M, and Chapter 9, Designing Import and DirectQuery
Data Models, may be necessary to organize these measures.

Field descriptions applied to Analysis Services data models will also flow
through to Power BI reports just like the examples in this section with a
Power BI dataset. However, field descriptions applied to Power BI
datasets are not visible when connecting via Microsoft Excel.

Metadata reporting
Analysis Services DMVs are available to retrieve the descriptions
applied to datasets and related information. These DMVs can be
leveraged for both simple, ad hoc extracts via common dataset
tools, such as DAX Studio, as well as more robust and
standardized reports in Power BI or Excel. Official
documentation of Analysis Services DMVs, including a reference
and description of each DMV, query syntax, and client-tool
access is available via the following link: http://bit.ly/2A81lek

http://bit.ly/2A81lek

Query field descriptions
The following query can be used to retrieve the measures in a
dataset with descriptions as well as their DAX expression:

SELECT
 [Name] as [Measure Name]
 , [Description] as [Measure Description]
 , [Expression] as [DAX Expression]
FROM
$SYSTEM.TMSCHEMA_MEASURES
WHERE LEN([Description]) > 1
ORDER BY [NAME];

As shown in the following screenshot, the query can be executed
from DAX Studio against the open Power BI Desktop file:

Measure descriptions via DMV query in DAX Studio

The WHERE clause in this query ensures that only measures with a
description applied are returned. Removing or commenting out
this clause (for example, --WHERE LEN([Description]) > 1) will return all

measures whether they have a description or not. Additionally,
column aliases of Measure Name, Measure Description, and DAX Expression
improve the usability of the DMV columns.

Just as measure descriptions can be retrieved via the
TMSCHEMA_MEASURES DMV, the following query retrieves the column
descriptions from the TMSCHEMA_COLUMNS DMV:

SELECT
 [ExplicitName] as [Column Name]
 , [Description] as [Column Description]
FROM $SYSTEM.TMSCHEMA_COLUMNS
WHERE LEN([Description]) > 1
ORDER BY [ExplicitName];

As per the official documentation referenced earlier in this
section, the query engine for DMVs is the Data Mining parser
and the DMV query syntax is based on the SELECT (DMX) statement.
Therefore, although the queries appear to be standard SQL
statements, the full SQL SELECT syntax is not supported, including
the JOIN and GROUP BY clauses. For example, it's not possible to join
the TMSCHEMA_COLUMNS DMV with the TMSCHEMA_TABLES DMV within the
same SELECT statement to retrieve columns from both
DMVs. Given these limitations, it can be helpful to build
lightweight data transformation processes on top of DMVs, as
described in the following section.

Standard metadata reports
For larger datasets with many measures, relationships, and
tables, a dedicated metadata report can be constructed using
Power BI. In this approach, the Analysis Services data connector
is used to access the DMVs of the Power BI dataset and this data
is transformed via M queries. Finally, a set of report pages are
created to visualize the primary objects of the model and support
common ad hoc questions, such as which relationships use
bidirectional cross-filtering?

Implementing the DMV-based Power BI report consists of the
following four steps:

1. Obtain the server and database parameter values of the
Power BI dataset

2. Query the DMVs of the Power BI dataset from a separate
Power BI Desktop file

3. Integrate and enhance the DMV data to support the
visualization layer

4. Develop the report pages

Server and database
parameters
The server value of the Power BI dataset is visible in the status
bar (bottom-right corner) when connected to the dataset from
DAX Studio, as shown in the following screenshot:

Server value of Power BI dataset via DAX Studio

In the following code, the server parameter is localhost:52809.
To obtain the database parameter, run the following query in
DAX Studio:

 SELECT
 [CATALOG_NAME]
 , [DATABASE_ID]
 FROM $SYSTEM.DBSCHEMA_CATALOGS

Both columns will retrieve the same GUID value that can be used
as the database parameter.

There are other methods of obtaining the server parameter, such as
finding the process ID (PID) in Task Manager and then running netstat -
anop tcp from Command Prompt to find the port associated with the PID.
Connecting to the dataset from DAX Studio is more straightforward and
it's assumed that experienced Power BI dataset designers will have at
least a basic familiarity with DAX Studio.

The server parameter (for example, localhost:52809) can also be used to

connect to the running Power BI dataset via SQL Server Profiler. This
can be useful for identifying the DAX queries generated by report visuals
and user interactions. Alternatively, Power BI Desktop can generate a
trace file via the Enable tracing setting within the Diagnostics option
(File | Options and Settings | Diagnostics).

Querying the DMVs from Power
BI
With the server and database known, parameters and queries
can be created in Power BI Desktop to stage the DMV data for
further transformations. In the following screenshot from the
Power Query Editor, three query groups are used to organize the
parameters, the DMV queries, and the enhanced queries (Metadata
Report Tables) used by the report:

Power Query Editor in Power BI Desktop

As per the TablesDMV query, the two parameters (AnalysisServicesServer
and AnalysisServicesDatabase) are passed to the AnalysisServices.Database()
function for each DMV query. As indicated by the gray font of the
DMV queries and the parameters, these queries are not loaded to
the data model layer.

To update the metadata report in a future session to reflect changes to
the dataset, the server and database parameter values would need to be
retrieved again. These values could then be passed to the data model
parameters, thus allowing all queries to update. This manual update
process is necessary with Power BI Desktop files, given changes to the
port and database ID, but is not necessary for metadata reports based
on Analysis Services models.

Given the small size of the DMV data and the limitations of SQL SELECT

queries against DMV data, a simple SELECT * is used to expose all columns

and rows. The Metadata Report Table queries contain all the joins and

transformations to prepare the data for reporting.

Integrating and enhancing DMV
data
The following M query produces the Relationships table by
implementing joins to retrieve the table and column names on
each side of each relationship:

let
 FromTableJoin = Table.NestedJoin(
 RelationshipsDMV,{"FromTableID"},TablesDMV,{"ID"},"TableDMVColumns", JoinKind.Inner),
 FromTable = Table.ExpandTableColumn(FromTableJoin, "TableDMVColumns", {"Name"}, {"From Table"}),
 ToTableJoin = Table.NestedJoin(
 FromTable,{"ToTableID"},TablesDMV,{"ID"},"TableDMVColumns", JoinKind.Inner),
 ToTable = Table.ExpandTableColumn(ToTableJoin, "TableDMVColumns", {"Name"}, {"To Table"}),
 FromColumnJoin = Table.NestedJoin(
 ToTable,{"FromColumnID"},ColumnsDMV,{"ID"},"ColumnsDMVColumns", JoinKind.Inner),
 FromColumn = Table.ExpandTableColumn(FromColumnJoin, "ColumnsDMVColumns",
 {"ExplicitName"}, {"From Column"}),
 ToColumnJoin = Table.NestedJoin(
 FromColumn,{"ToColumnID"},ColumnsDMV,{"ID"},"ColumnsDMVColumns", JoinKind.Inner),
 ToColumn = Table.ExpandTableColumn(ToColumnJoin, "ColumnsDMVColumns",
 {"ExplicitName"}, {"To Column"}),
 CrossFilteringColumn = Table.AddColumn(ToColumn, "Cross-Filtering Behavior", each
 if [CrossFilteringBehavior] = 1 then "Single Direction"
 else if [CrossFilteringBehavior] = 2 then "Bidirectional" else "Other", type text),
 RenameActiveFlag = Table.RenameColumns(CrossFilteringColumn,{{"IsActive", "Active Flag"}})
in
 RenameActiveFlag

The Relationships DMV (TMSCHEMA_RELATIONSHIPS) includes table and
column ID columns, which are used for the joins to the tables
(TMSCHEMA_TABLES) and columns (TMSCHEMA_COLUMNS) DMVs, respectively.
Additionally, a more intuitive cross-filtering behavior column is
added based on a conditional (if..then) expression.

Metadata report pages
With the enhanced DMV data loaded, report pages can be
created, visualizing the most important columns. In the
following screenshot, the table and column names retrieved via
the M query joins in the previous section, Integrating and
enhancing the DMV data, are included in a simple table visual:

Metadata report page

In the slicer visual on the left, the table is filtered to only display
relationships in which the Internet Sales and Product tables are on
the From Table side of the relationship. In other words, only the
relationships in which the Internet Sales and Product tables are on
the many side of a one-to-many relationship are displayed. The

Active Flag column identifies the two inactive date relationships
based on Due Date and Ship Date. Additionally, the cross-filtering
behavior column and slicer makes it easy to identify any
relationships with bidirectional cross-filtering enabled.

A Power BI Desktop file containing the M queries and report pages from
this example is included with the code bundle for this book. Additionally,
Chapter 8, Connecting to Sources and Transforming Data with M, and Chapter
9, Designing Import and DirectQuery Data Models, describe the essential
concepts of M queries and relationships contained in this section,
respectively.

Summary
This chapter introduced application workspaces and their
fundamental role in managing and delivering Power BI content
to groups of users in the Power BI service. A staged deployment
architecture across development, test, and production
workspaces was described, including calls to the Power BI REST
API to manage this process. Additionally, several features and
processes related to content management and governance were
reviewed, including version history via OneDrive for Business,
field descriptions, and accessing the DMVs of datasets to
document datasets.

The next chapter examines the On-premises data gateway and
the configuration of data refresh processes in the Power BI
service. This includes the administration of the gateway, such as
authorizing users and data sources, as well as monitoring
gateway resource utilization.

Managing the On-Premises Data
Gateway
For many organizations, the data sources for Power BI datasets
or reports are located in on-premises environments. The On-
premises data gateway provides a means to securely connect to
these sources to support scheduled data refreshes or, in the case
of DirectQuery and Analysis Services Live connections, only
return the results of queries requested by users in the Power BI
service. As a critical component of many Power BI solutions and
potentially other solutions utilizing Microsoft cloud services,
such as Azure Analysis Services, MS Flow, and PowerApps, a
sound understanding of the On-premises data gateway is
essential.

This chapter reviews the architecture and behavior of the On-
premises data gateway in the context of Power BI. End-to-end
guidance and best practices are provided across the primary
stages of deployment, from planning to installation, and setup to
management and monitoring.

In this chapter, we will review the following topics:

On-premises data gateway planning

Gateway clusters and architectures

Configuration of the On-premises data gateway

Dashboard tile cache refresh

Managing gateway clusters

Monitoring gateway usage

Live connections to Analysis Services models

Single sign-on DirectQuery

On-premises data gateway
planning
Planning for the On-premises data gateway involves identifying
which data sources require a gateway and understanding the role
of the gateway in each deployment scenario. For example, if an
import mode Power BI dataset or an import mode Azure
Analysis Services model simply needs to be refreshed with on-
premises data every night, then gateway resources (hardware)
should be provisioned to support this specific nightly workload.
This deployment scenario, with the refreshed and in-memory
data model hosted in the cloud, is preferable from a user
experience or query performance standpoint, as the queries
generated in the Power BI service do not have to access the on-
premises source via the On-premises data gateway.

Alternatively, when the data model or data source accessed
directly by Power BI reports is located in an on-premises
environment, the On-premises data gateway is used to facilitate
data transfer between the data source and the queries from the
Power BI service. For example, a DirectQuery Power BI dataset
built against on-premises Teradata database results in report
queries being sent from the Power BI service to the Teradata
database via the On-premises data gateway and the results of
those queries being returned to the Power BI service via the On-
premises data gateway. This deployment scenario can naturally
require alternative gateway resources, such as additional CPU
cores, given the potentially high volume of queries being
generated dynamically based on user activity.

In addition to on-premises data sources, data sources residing in

Infrastructure-as-a-Service (IaaS) virtual machines (VMs) also
require a data gateway. This is an important exception as cloud data
sources generally do not require a gateway. For example, Platform-as-
a-Service (PaaS) sources, such as Azure SQL Database, and Software-
as-a-Service (SaaS) solutions, such as Google Analytics, do not require
a gateway.

The following two sets of questions address essential, high-level
planning topics including the administration of the installed
gateway. The following section, Top gateway planning tasks, as
well as the Gateway architectures section later in this
chapter, contain higher detail to support gateway deployment:

1. Where is the data being used by the Power BI dataset?

1. Confirm that a gateway is needed to access the
data source from Power BI

2. This access includes both scheduled data refresh
and any DirectQuery or Live connections to the
data source

3. Additional details on sources requiring a gateway
are provided in the next section

2. If a gateway is needed, is the data source supported with
a generally available (GA) data connector?

1. If a source-specific connector is not available, the
gateway supports Open Database
Connectivity (ODBC) and OLE DB connections
as well

2. The current list of supported data sources is

available at http://bit.ly/2EN1BCg

3. Data connectors labeled as (Beta) in the Get Data
window of Power BI Desktop should only be used
for testing

3. Is the on-premises data or the IaaS data being imported
to the Power BI dataset(s) or an Azure Analysis Services
model?

1. If yes, the gateway will support the scheduled
refresh/processing activities for these datasets

2. If no, the gateway will support user queries of the
data source via DirectQuery or Live connections

4. Will a standard On-premises data gateway be used or will
a personal gateway (personal mode) be used?

1. In all corporate BI deployments, the default and
recommended on-premises gateway will be
installed by the IT organization on IT-owned and
maintained servers.

2. However, in certain business-led self-service
projects or in scenarios in which an IT-owned
gateway server is not available, the personal
gateway could be installed on a business user's
machine, allowing that user to configure

http://bit.ly/2EN1BCg

scheduled refreshes of import mode datasets.

A single gateway can be used to support multiple datasets, both
import and DirectQuery. However, it can be advantageous to
isolate the alternative Power BI workloads across distinct
gateway clusters, such as with an import gateway cluster and a
DirectQuery or Live connection gateway cluster. Without this
isolation, the scheduled refresh activities of import mode
datasets (Power BI or Azure Analysis Services) could potentially
impact the performance of user queries submitted via
DirectQuery and Live connection datasets. Additionally, as
mentioned earlier, scheduled refresh activities can require far
different gateway resources (for example, memory) than the
queries generated via DirectQuery datasets or Live connections
to on-premises SQL Server Analysis Services (SSAS)
databases.

In addition to provisioning hardware and installing the
gateway(s) for each scenario, BI teams must also plan for the
administration and management of the gateway. Answering the
following five questions contributes to planning the
implementation:

1. Which users will administer the gateway in Power BI?

1. This should be more than one user; preferably, a
security group of multiple gateway admins can be
configured

2. These users do not need Power BI Pro licenses if
they're only administering gateway clusters

In larger Power BI deployments, distinct users or security groups could

be assigned as administrators of different gateways. For example, two
users could administer a gateway cluster utilized by enterprise or
corporate-owned BI content while two other users could administer a
gateway cluster used to support self-service BI content and projects.

This isolation of hardware resources between corporate and self-service
BI (that is, business user/team owned) can also be implemented with
Power BI Premium capacities, as described in Chapter 19, Scaling with

Premium and Analysis Services. The essential goal of this isolation is to
provide the self-service projects with resources aligned to these needs
while ensuring that high priority and widely utilized corporate BI assets
are not impacted by self-service content or activities.

2. Which authentication credentials or method will be used
to configure the gateway data sources?

1. For SSAS and Azure Analysis Services, this should
be a server administrator of the Analysis Services
instance

2. For certain DirectQuery data sources, a single
sign-on (SSO) option is supported in which the
Power BI user's identity is passed to the source
system, thus leveraging the source system's
security.

3. The DirectQuery datasets section later in this
chapter contains details of this configuration

3. Which users will be authorized to use the gateway?

1. Users or security groups of users must be mapped
to the data source of a gateway

2. These are usually report authors with Power BI
Pro licenses

4. Where will the gateway recovery key be stored?

1. This will be necessary for migrating, restoring, or
taking over an existing gateway

5. Who will be responsible for updating the On-premises
data gateway as new versions are released?

1. Just like Power BI Desktop, a new version of the
On-premises data gateway is made available each
month and includes new features and
improvements, such as the support for datasets
with both cloud and on-premises data sources

2. The Power BI team recommends staying up to
date with new releases and will not support old
gateway versions

3. For example, as of March 15, 2018, gateway
versions older than the August 2017 release will
not be supported

Each monthly gateway version includes the same M Query engine
utilized by that month's release of Power BI Desktop. Examples and
considerations for M Queries were described in Chapter 8, Connecting to
Sources and Transforming Data with M.

In the following image, two users are added to a security group

in Azure Active Directory (AD), dedicated to the
administration of the On-premises data gateway:

Security group in Azure Active Directory

In this example, mapping the On-Premises Gateway Admins security
group to a gateway in Power BI would allow Anna and Brett to
configure data sources for the gateway and to authorize users or
security groups of users to utilize the gateway. The Managing
gateway clusters section later in this chapter includes details on
using the gateway portal in the Power BI service.

Top gateway planning tasks
Since the gateway relates to different areas of IT, including
infrastructure, networking, and data security, subject matter
experts in these areas often inquire about the technical
requirements of the gateway and its functionality. Additionally,
business intelligence teams want to ensure that the gateway
doesn't become a bottleneck to query performance and that
dependencies on an individual gateway are avoided. Therefore,
the BI/IT teams responsible for deploying Power BI solutions
with on-premises data (or IaaS data) must partner with these
other IT stakeholders to resolve questions and to provision the
appropriate resources for the On-premises data gateway.

This section addresses three of the most common gateway
planning questions. Information related to high availability and
security is included in the gateway clusters and architectures,
and gateway security sections, respectively.

Determining whether a gateway
is needed
As one would expect, an On-premises data gateway is usually not
required for connectivity to cloud data sources. PaaS offerings,
such as Azure SQL Database, and SaaS solutions, such as
Salesforce, do not require a gateway.

However, data sources that reside in an IaaS VM do require a
gateway. Additionally, the Web.Page() function used in M Queries
also requires a gateway. This function is used by the Web Data
Connector (WDC) (Get Data | Web) to return the contents of
an HTML web page as a table, as shown in the following M
Query:

// Retrieve table of data access M functions and their descriptions
let
 Source = Web.Page(Web.Contents("https://msdn.microsoft.com/en-US/library/mt296615.aspx")),
 PageToTable = Source{0}[Data],
 ChangedType = Table.TransformColumnTypes(PageToTable,

 {{"Function", type text}, {"Description", type text}})
in
 ChangedType

In the preceding example, a two-column table (Function, Description)
of M functions is retrieved from an MSDN web page and
imported into a table in Power BI.

Additionally, all data sources for a dataset that accesses an on-

premises data source must be added to the list of data sources in
the gateway management portal. For example, if a dataset uses
both SharePoint (on-premises) and an Azure SQL database, the
URL for the Azure SQL database must also be added as a data
source (via the SQL Server data source type) in the gateway
management portal. If one of the data sources for the dataset is
not configured for the gateway, the gateway will not appear in
the dataset settings to support a refresh.

Identifying where the gateway
should be installed
Gateways should be installed in locations that minimize the
distance between the Power BI service tenant, the gateway
server, and the on-premises data source. Reduced physical
distance between these three points results in less network
latency and thus improved query performance. Minimizing this
latency is especially important when the gateway is used to
support interactive report queries from Power BI to on-premises
DirectQuery sources and Live connections to on-premises SSAS
models.

Network latency from an IP location to Azure data regions can be tested
at http://azurespeed.com.
For example, via this free tool, it can quickly be determined that the
average latency to the West US region is 100 ms while the East US
region is only 37 ms. The lower latency of the East US region is due to the
physical proximity of this region to the source IP location (near Boston,
MA).

For example, if the Power BI tenant for your organization is
located in the North Central US region in Microsoft Azure and
your on-premises data source (for example, Oracle) is also
located in the upper Midwest region of the United States, then
the gateway should be installed on a server near or between
these two locations.

The location of a Power BI tenant can be found by clicking the
About Power BI menu item via the question mark icon in the
top-right corner of the Power BI service:

http://azurespeed.com

About Power BI: tenant location

In this example, the Power BI content for the organization is
being stored in the North Central US (Illinois) Azure
region. Therefore, the gateway should be installed on a location
that minimizes the distance between Illinois and the location of
the data source. One example of this would be to install the
gateway on the same subnet of the production data source
server. It's not necessary, or recommended, to install the
gateway on the same server as the production data source.

Currently, there are 36 Azure regions globally with six new regions
planned. This link identifies the Azure regions and the criteria for
choosing a specific region: http://bit.ly/2B598tD.

http://bit.ly/2B598tD

Defining the gateway
infrastructure and hardware
requirements
The recommended starting point for the server on which the
gateway will be installed is eight CPU cores, 8 GB of memory,
and the 64-bit version of Windows 2012 R2 (or later). However,
hardware requirements for the gateway server will vary
significantly based on the type of dataset supported (import
versus DirectQuery/Live connection), the volume of concurrent
users, and the queries requested.

For example, if an M Query or part of an M Query is not folded
back to the source system, as described in Chapter 8, Connecting to
Sources and Transforming Data with M, the gateway server will
be required to execute the non-folded M expressions during the
scheduled refresh (import) process. Depending on the volume of
data and the logic of these expressions, a greater amount of RAM
would better support these local operations. Similarly, if many
users will be interacting with reports based on a DirectQuery
dataset or a Live connection to a SSAS model (on-premises),
additional CPU cores will result in better throughput.

It's strongly recommended to avoid a single point of failure by installing
instances of the On-premises data gateway on separate servers. These
multiple instances can serve as a single gateway cluster of resources
available to support data refreshes and queries against on-premises
data sources. Gateway clusters and architectures consisting of separate
gateway clusters are described in later sections of this chapter.

Performance counters associated with the gateway and the
gateway server can be used to determine whether adjustments in

available resources (RAM and CPU) are necessary. Guidance on
interpreting these counters and a technique to integrate and
visualize this data via Power BI is included in the Monitoring
gateway usage section later in this chapter.

In terms of network configuration, the gateway creates an
outbound connection to the Azure Service Bus and does not
require inbound ports. The gateway communicates on the
following outbound ports: TCP 443 (default), 5671, 5672, and 9350
through 9354. It's recommended that organizations whitelist the
IP addresses for the data region of their Power BI tenant (for
example, North Central US) within their firewall. The list of IP
addresses for the Azure data centers can be downloaded via the
following URL http://bit.ly/2oeAQyd.

The downloaded list of Azure IP addresses is contained within an
XML file which can be easily accessed via Power BI Desktop, as
shown in the following image:

Azure datacenter IP addresses

The gateway installs on any domain-joined machine and cannot
be installed on a domain controller. Additionally, only one
gateway can be installed per computer per gateway mode
(enterprise versus personal). Therefore, it's possible to have both
an enterprise mode and a personal mode gateway running on the
same machine.

http://bit.ly/2oeAQyd

On-premises data gateway
versus personal mode
The first configuration setting when installing a gateway is the
mode of the gateway, as depicted in the following image:

On-premises data gateway installer

The default and recommended gateway mode (commonly
referred to as the enterprise mode) provides all the functionality
of the personal mode plus many more features and management
capabilities. These additional benefits include support for
DirectQuery and Live connection datasets, several other Azure
services, such as MS Flow, and the management capabilities
described in the Managing gateway clusters section later in this

chapter.

A single personal mode gateway can be installed per Power BI
user account and can only be used for the on-demand or
scheduled refresh of the import mode Power BI datasets. Most
importantly, the personal mode gateway is completely tied to the
individual user and cannot be shared. For example, if the
gateway is installed in the personal mode on a user's laptop, that
laptop will need to be on and connected to the internet to
support any scheduled data refreshes. Additionally, unlike the
administrators of the On-premises data gateway, a personal
mode user cannot authorize other users to leverage the personal
mode gateway and its configured data sources.

In the following image, both a personal mode gateway and a
standard On-premises data gateway are available to refresh a
dataset:

Dataset gateway connection

In the preceding example, if the user was not authorized to use
the On-premises data gateway (Frontline Gateway), the personal

mode gateway could be used to complete the refresh. This
assumes the user has the necessary privileges to the on-premises
data sources of the import mode dataset.

Although the terms in the Dataset settings menu refer to single gateways
(for example, Gateway connection, data gateway), the Frontline
Gateway is actually a cluster of gateway resources. Specifically, the
Frontline Gateway operates as a single logical unit but may have
multiple gateways installed across separate servers. The gateway
clusters and architectures section contains additional details on the
configuration of multiple clusters and multiple gateways within a
cluster.

The personal mode gateway is not intended for large datasets or
datasets supporting reports and dashboards that many users
depend on. The personal mode gateways should only be
considered for enabling individual business users to work on
personal or proof-of-concept projects. For example, the business
user may have several Excel workbooks and other frequently
changing local files that are not configured as data sources on an
On-premises data gateway. If the user has been assigned a Power
BI Pro license, the personal mode gateway allows the user to
keep Power BI reports and dashboards based on these sources
updated for review by colleagues. In the event that the user's
content requires reliable, longer-term support, the BI/IT
organization can add the data sources to an On-premises
gateway (enterprise mode) and revise removing the dependency
on the user's machine.

All the remaining sections of this chapter are exclusively focused
on the On-premises data gateway (that is, the enterprise mode).
Although there are overlapping characteristics with the personal
mode, any reference to the On-premises data gateway in this
chapter and elsewhere in this book refers to the default mode
(enterprise).

Gateway clusters
Each Power BI dataset is associated with a single gateway
cluster, which is composed of one or many gateway instances.
For example, if a Power BI dataset (.pbix) imports data from both
a SQL Server database and an Excel file, the same gateway
cluster will be responsible for the import from both sources.
Likewise, if hundreds of business users interact with reports
based on the same DirectQuery dataset or a Live connection to
an on-premises SSAS instance, these user interactions will
generate query requests to the same gateway cluster.

Gateway clusters representing multiple gateways (for example,
primary and secondary), each of which must be installed on
separate machines as per the Hardware and network
requirements section, provide both high availability and load
balancing. From an availability standpoint, if an individual
gateway instance within a cluster is not running, due to a server
failure, for example, the data refresh and user query requests
from the Power BI service will be routed to the other gateway
instance(s) within the cluster. In terms of query performance
and scalability, the Power BI service will distribute (load
balance) the query requests across the multiple gateway
instances within the cluster.

Data source configurations for the primary gateway of the cluster,
which is the first gateway installed for the cluster, are leveraged by any
additional gateways added to the cluster. For example, when a gateway
cluster is first created on server abc and a data source (for example, SQL
Server) is added to this cluster, the same data source settings (for
example, the authentication method) will be used when another gateway
on server xyz is added to the gateway cluster.

In the following image from the gateway installer application, a

new gateway is added to an existing gateway cluster:

Adding a gateway to a gateway cluster

In this example, the new gateway (Frontline Gateway Backup) is added
to the Frontline Gateway cluster as per the checkbox and
Available gateway clusters selection. Note that the Recovery key
for the primary gateway instance, which was created when the
first gateway instance of the cluster was installed, is required to
add a gateway to a cluster. Additionally, be aware that the
gateway management portal in the Power BI service only
displays the gateway clusters, not the individual gateways within
each cluster. Both the gateway clusters and the individual
gateways within each cluster can be accessed and managed via
PowerShell scripts as per the Managing gateway clusters
section.

Prior to the release of gateway clusters in late 2017, each Power BI
dataset was dependent on a single gateway (and thus a single server).
This was a significant limitation from both an availability and a
performance standpoint as BI teams and projects would naturally prefer

to reuse the same dataset for many reports and dashboards. Adding a
gateway or multiple gateways from separate servers to a single gateway
cluster eliminates this single point of failure and provides load balancing
of the requested queries by default.

Before adding a gateway to a cluster, ensure that the new
gateway instance will be able to connect to the same data sources
configured for the cluster. As described in the Top gateway
planning tasks section, the additional gateways added to
gateway clusters should also be installed in locations that
minimize the distance between the gateway server, the Power BI
service tenant, and the data source(s).

Gateway architectures
For large-scale deployments of Power BI in which multiple types
of datasets and workloads will be supported (import refreshes, as
well as DirectQuery and Live connection queries), BI teams can
consider multiple gateway clusters. In this approach, each
gateway cluster is tailored to meet the specific resource needs
(RAM and CPU) of the different workloads, such as large nightly
refreshes or high volumes of concurrent queries in the early
mornings.

For example, one gateway cluster could be composed of two
gateway instances with a relatively high amount of available
RAM on each gateway server. This cluster would have resources
available during the most intensive scheduled refresh operations
(for example, 4 A.M. to 6 A.M.) and would be exclusively used by
import mode Power BI datasets and any Azure Analysis Services
models that also regularly import data from on-premises
sources. A separate gateway cluster would be created based on
two gateway instances with a relatively high number of CPU
cores on each gateway server. This gateway cluster would be
used exclusively by DirectQuery Power BI datasets and any
reports based on Live connection to an on-premises SQL Server
Analysis Services instance.

A third gateway cluster, in addition to an import and a
DirectQuery/Live connection cluster, could be dedicated to
business-led BI projects. For example, as described in the On-
premises data gateway versus personal mode section earlier in
this chapter, certain data sources maintained by business teams
(for example, Excel workbooks) may require the high availability

and management benefits of the On-premises data gateway.
Generally, this self-service cluster would be oriented toward
scheduled refresh operations, but organizations may also want to
empower business users to create DirectQuery datasets or
reports based on Live connections to SSAS instances (on-
premises).

In the following example from the Manage gateways portal in the
Power BI service, two gateway clusters have been configured:

Manage gateways in Power BI service

As shown in the preceding image, the two
Gateway Clusters (Frontline Gateway and Frontline Gateway 2)
have been configured to support different data sources. As noted
in the previous section, the individual gateway instances
installed for each cluster are not currently accessible from the
gateway portal but can be accessed via PowerShell scripts. Each
cluster represents a single logical unit of gateway resources for
its given data source(s).

If gateway clusters are created for specific workloads (for example,
import versus DirectQuery), it can be helpful to note this both in the
Gateway Cluster Name and in its Description. It's not recommended to
allow a single point of failure but if only one gateway server is used in a
cluster then the name of this server can be included in the cluster name
and description.

The following diagram depicts a gateway cluster being used to
support a scheduled data refresh of a Power BI dataset:

Scheduled data refresh via gateway cluster

With the data source(s) configured in the Manage Gateways
portal in the Power BI Service, a scheduled data refresh for an
import mode dataset can be configured to use the Gateway
Cluster. The Gateway Cluster receives the query request at
the scheduled time and is responsible for connecting to the data
source(s) and executing the queries that load/refresh the tables
of the Power BI dataset. Once the dataset in the Power BI

Service is refreshed, dashboard tiles based on the dataset will
also be refreshed and reports built against the dataset will issue
queries against the dataset.

Given that the report queries are local to the refreshed dataset
within the same Power BI Service tenant, and given the
performance optimizations of the engine running within import
mode Power BI datasets (that is, columnar compression, in-
memory), query performance is usually very good with this
deployment.

Currently, the entire Power BI dataset must be fully refreshed in each
scheduled refresh operation. This is very inefficient, and in some
scenarios infeasible, for large datasets as resources are needed to load
both historical (unchanged) data and new data. However, incremental
data refresh is a top feature identified on the Power BI Premium
roadmap and, along with other roadmap features, will help support
larger Power BI datasets. Additional details on Power BI Premium are
included in Chapter 19, Scaling with Premium and Analysis Services.

The following diagram depicts two gateway clusters being used
to support both the scheduled refresh of an import mode dataset
and a Live connection to a SSAS tabular instance:

Multiple gateway clusters

Gateway Cluster A in the preceding diagram functions just
like the previous diagram in supporting scheduled refreshes of
import mode datasets. Gateway Cluster B has been created to
exclusively support queries requested via Live connections to an
on-premises SSAS database—an SSAS Tabular model in this
scenario. Given the high volume of query requests generated by
users interacting with Power BI reports based on the SSAS
model, the servers used in Gateway Cluster B can be
provisioned with additional CPU cores and actively monitored
via performance counters for changes in utilization.

In addition to the interactive query requests from Live connection
reports, owners of datasets can configure a scheduled refresh for the
cache supporting dashboard tiles based on Live connection reports.
Guidance on configuring this feature is included in the Dashboard cache
refresh section at the end of this chapter.

The description of Gateway Cluster B is also generally
applicable to DirectQuery datasets based on supported sources,
such as SQL Server, Oracle, and Teradata. Just like Live
connections to SSAS, reports built against these datasets will
also generate high volumes of queries that must go through the
gateway cluster and be returned to the Power BI service tenant.

Given the additional latency created by the requests for queries
and the transfer of query results back to the Power BI service, it's
especially important to develop and provision efficient data
sources for DirectQuery and Live connection reports. Two
examples of this include using the clustered columnstore index
for SQL Server and optimizing the DAX expressions used for
measures of an SSAS model.

Additionally, organizations can consider Azure ExpressRoute to
create a fast, private connection between on-premises
infastructure and Azure. The following URL provides
documentation on this service: http://bit.ly/2tCCwEv.

http://bit.ly/2tCCwEv

Gateway security
Administrators of the On-premises data gateway, such as the
security group mentioned in the On-premises data gateway
planning section, are responsible for configuring the data
sources that can be used with each gateway cluster. Additionally,
gateway administrators have control over the users or security
group(s) of users that can utilize a gateway data source.

As shown in the following image from the Manage gateways
portal in the Power BI service, credentials entered for data
sources are encrypted:

Encrypted data source credentials

The data source credentials are only decrypted once the query
request reaches the on-premises gateway cluster within the

corporate network. The gateway decrypts the credentials needed
for query requests and, once the query has executed, it encrypts
the results of these query requests prior to pushing this data to
the Power BI service. The Power BI service never knows the on-
premises credential values.

Technically, the following five-step process occurs to facilitate
communication and data transfer between the Power BI service
and the on-premises sources:

1. The Power BI service initiates a scheduled refresh or a
user interacts with a DirectQuery or a Live connection
report.

In either event, a query request is created and
analyzed by the data movement service in Power BI.

2. The data movement service determines the appropriate
Azure Service Bus communication channel for the given
query.

A distinct service bus instance is configured per
gateway.

3. The On-premises data gateway polls its service bus
channel and obtains the pending request.

4. The gateway decrypts the credentials and then sends the
query to the data source for execution.

5. The results of the query (data) are returned to the
gateway, encrypted, and then pushed to the Power BI

service.

The critical component of the gateway's security is the recovery
key that's created during the installation and configuration
process. In the following image, a user account has signed into
the Power BI service and both a name for the gateway and a
recovery key are required to configure the gateway:

Configuration of an On-premises data gateway

The recovery key is used to generate strong RSA and AES
encryption keys. As described earlier in this section, these
encyrption keys never leave the gateway machine.

It's strongly recommended to store the gateway recovery key in a
safe and secure location. This should be on a machine other than
the gateway server itself as the recovery key can be used to
migrate, restore, or take over an existing gateway, as described in
the Troubleshooting and monitoring gateways section later in
this chapter. Additionally, the recovery key is required when

adding a gateway to a cluster to provide high availability and
load balancing.

Gateway configuration
Once the gateway scenario and architecture has been planned
per the previous sections, BI or IT administrators can download
and install the gateway (or multiple gateways) on the chosen
server(s). The gateway installation file to be downloaded is small
(for example, 508 KB) and the installation process is quick and
straightforward. However, gateway administrators should be
aware of primary settings, such as the default Windows service
account used by the gateway, and the option to change this
account as well as the option to switch network communication
from TCP to HTTPS.

The gateway installer application can be obtained via the
Download dropdown in the Power BI service, as shown in the
following image:

Download in Power BI service

The Data Gateway item from the download menu in the

preceding image currently links to a Power BI Gateway page with
a large Download Gateway button at the top. Selecting Download
Gateway from this page allows the user to save the installer
(PowerBIGatewayInstaller.exe) locally. If the gateway installation file is
downloaded from a web page other than the Power BI Gateway
page, such as Azure Logic Apps documentation, the option to
install the gateway in personal mode will not be included.

The installation and configuration process via the installer
application is very straightforward. Step-by-step instructions
have been documented here (see Install the gateway section) htt
p://bit.ly/2rq22Ao.

Once the installation and configuration is complete, an On-
premises data gateway application will be available on the server
machine to help manage the gateway, as shown in the following
image:

On-premises data gateway application

Details on the settings available via this application are included
in the Troubleshooting and monitoring gateways section later
in this chapter. When first getting started with the gateway, you
can launch the application after configuration and sign in with a
Power BI service account to check the status of the gateway and
to get familiar with the tool.

The same installation software can be downloaded and run to
update an existing On-premises data gateway to the latest
version. For example, the January 2018 version of the gateway
corresponds to version 14.16.6584.1 and this includes the very
latest data mashup engine, bug fixes, and new administrative
features. The update process is very quick to complete and the

http://bit.ly/2rq22Ao

On-premises data gateway application will reflect the new
version number on the Status page, as shown in the following
image:

On-premises data gateway status

It's strongly recommended to regularly update the On-premises
data gateway to the latest version. An out-of-date gateway will be
flagged for updating on the Status page of the On-premises data
gateway and may result in data refresh or connectivity issues.

Additionally, administrators should be aware of the following
two XML configuration files for the gateway:

C:\Program Files\On-premises data gateway\enterprisegatewayconfigurator.exe.config
C:\Program Files\On-premises data gateway\Microsoft.PowerBI.EnterpriseGateway.exe.config

The configurater.exe file relates to the installation screens that
configure the gateway. The PowerBI.EnterpriseGateway.exe file is for the
actual Windows service that handles the query requests from the
Power BI service.

The gateway service account
By default, the gateway runs under the NT
SERVICE\PBIEgwService Windows service account. However,
as shown in the following image from the On-premises data
gateway desktop application, this account can be changed via the
Service Settings tab:

On-premises data gateway application

In the preceding example, a user has opened the gateway
application from the server on which a gateway instance has
been installed. Additionally, in order to change the service
account, the user has signed into Power BI from the gateway
application with the email address used to log in to the Power BI
service.

If the default account (NT SERVICE\PBIEgwService) is able to
access the internet and thus its Azure Service Bus, ensure that
the account can also authenticate to the required on-premises
data sources, such as the production SQL Server instance. In
some environments, the default account cannot access the
internet as it is not an authenticated domain user. In this
scenario, the service account can be revised to a domain user
account within the Active Directory domain. To avoid the need to
routinely reset the password for the Active Directory account, it's
recommended that a managed service account is created in
Active Directory and used by the gateway service.

TCP versus HTTPS mode
By default, the gateway uses direct TCP network communication.
However, as shown in the following image from the On-premises
data gateway application, the gateway can be forced to
exclusively use HTTPS via the Network tab:

On-premises data gateway application

In the preceding example, a user has opened the gateway
application from the server on which a gateway instance has
been installed. Unlike modifying the service account per the
previous section, however, the user does not need to sign in to
Power BI from the gateway application to enable the HTTPS
mode. A restart of the gateway is required to apply the change to
the HTTPS mode and thus this modification should only be

implemented when minimal or no query requests are being
processed.

Once the HTTPS mode has been applied, the gateway will strictly
use FQDN only and no communication will happen using IP
addresses. As advised in the gateway application, enabling the
HTTPS mode may slow the performance of gateway requests.

Managing gateway clusters
Once a gateway has been installed, the Power BI account used to
register the gateway during installation can access the manage
gateways portal in the Power BI service to assign administrators
for the gateway. For example, if Anna Sanders' account was used
to register the gateway during installation, as shown in the
following image, Anna would initially be the only administrator
of the gateway:

Account registering the gateway

Once registered, Anna can use the manage gateways portal to
add a security group of users as administrators for the gateway.
Anna can then optionally remove her individual account from

the list of gateway administrators since she's either already
included in the admin security group or it's not her role to
administer this gateway.

The Manage gateways portal is available via the gear icon in the
top-right corner of the Power BI service, as shown in the
following image:

Manage gateways

The Manage gateways portal exposes all gateway clusters that
the user is an administrator for. The primary functionality and
tasks of gateway administrators are described in the following
sections.

Gateway administrators
Administrators of gateway clusters have the ability to add or
remove data sources, modify the authentication to those sources,
and to enable or disable users or groups of users from utilizing
the cluster. Given the importance of these responsibilities, more
than one gateway administrator, such as a security group of
admins, is strongly recommended. For example, in the event that
the credentials for a data source need to be revised or when a
data source needs to reference a different database, only an
admin for the gateway will be able to implement these changes in
the Manage gateways portal.

In the following image from the Manage gateways portal in
Power BI, a single security group (On-Premises Gateway
Admins) has been added as the administrator of the Frontline
Gateway cluster:

Power BI gateway administrators

As described in the On-premises data gateway planning section
earlier in this chapter, this security group currently includes two
users (Anna Sanders and Brett Powell).

Gateway data sources and users
The primary role of gateway administrators is to add data
sources per the gateway cluster and to authorize (or remove)
users or groups of users. With the gateway cluster selected
within the Manage gateways portal, clicking ADD DATA
SOURCE from the list of gateway clusters creates a blank new
data source, as shown in the following image:

Adding a data source to a gateway cluster

New data sources can also be added via the ellipsis to the right of
each cluster name in the Manage gateways portal. Once data
sources have been added, the users who will publish reports
and/or schedule data refreshes via the gateway can be added to
the data source.

In the following example, a security group of users is added to
the AdWorksDW data source of the Frontline Gateway:

Adding a security group of users to the gateway data source

The users included in the security group (for example, AdWorks
DW Sales Team) will see the option to use the Frontline Gateway
to configure scheduled refreshes in the Data Source Settings
menu. For DirectQuery datasets and Live connections to on-
premises SSAS databases, Power BI Desktop will advise that a
gateway has been applied when the PBIX file is published.

PowerShell support for gateway
clusters
A PowerShell script module is included in the installation of the
On-premises data gateway to support the management of
gateway clusters. Once the module is imported to a session of
PowerShell in which the user has administrator privileges, a
login command (Login-OnPremisesDataGateway) must be executed to
enable other gateway management commands.

By default, the PowerShell module file (.psm1) can be imported
from the following path:

On-premises gateway PowerShell module

Unlike the Manage gateways portal in the Power BI service, the
PowerShell commands provide access to the specific gateway
instances configured for each cluster. For example, properties of
a specific gateway within an instance can be modified or a
gateway instance can be removed from a cluster altogether.

In the following example from PowerShell, the gateway admin
account (ASanders@FrontlineAnalytics.onmicrosoft.com) has been used for
the Login-OnPremisesDataGateway command:

Gateway cluster PowerShell commands

Once authenticated as Anna Sanders, the Get-
OnPremisesDataGatewayClusters command has been used to retrieve the
list of gateway clusters in which Anna is an administrator. The
list of available gateway cluster PowerShell commands and their
parameters can be found here: http://bit.ly/2BfXL2e.

http://bit.ly/2BfXL2e

Troubleshooting and
monitoring gateways
For organizations with significant dependencies on the On-
premises data gateway, it's important to plan for administration
scenarios, such as migrating or restoring a gateway to a different
machine. Gateway administrators should also be familiar with
accessing and analyzing the gateway log files and related settings
to troubleshoot data refresh issues. Finally, gateway throughput
and resource availability can be consistently monitored via
Windows' performance monitor counters associated with the
gateway and the gateway server.

In the following image, the status and version number of an
installed gateway is obtained via the On-premises data gateway
desktop application:

On-premises data gateway application

In the preceding example, a user has accessed the server on
which the Frontline Gateway instance has been installed and
then opened the On-premises data gateway application. To
obtain the gateway's status (for example, green check mark), the
user is required to sign in with the email address used to log in to
the Power BI service. If the Gateway version number is out of
date, a message will appear advising that a new version of the
gateway is available. It's recommended to regularly update
gateways to the latest versions.

Restoring, migrating, and
taking over a gateway
In many scenarios, it's necessary to migrate or restore a gateway
to a separate server. For example, a gateway may have initially
been installed on a server with insufficient resources to support
the current workload. In other cases, a hardware failure may
have occurred on a gateway's server and thus it's necessary to
quickly restore connectivity. Via the recovery key that's created
when a gateway is first installed and configured, the data sources
and their associated settings (authentication and credentials)
can be restored on a new gateway machine.

In the following image, the gateway installation application
(PowerBIGatewayInstaller.exe) provides the option to Migrate, restore,
or takeover an existing gateway rather than register a new
gateway:

Gateway setup options

Choosing to Migrate, restore, or takeover an existing gateway
will require the recovery key that is created when a gateway is
originally configured. If this key is not available, the only option
will be to install a new gateway and manually add the data
sources and authorized users for that gateway. Additionally, only
an administrator of a gateway can use the recovery key to restore
a gateway to a different server.

Gateway log files
The On-premises data gateway desktop application makes it easy
for gateway administrators to analyze gateway request activity.
As shown in the following image, the Diagnostics tab allows
admins to record additional details in the gateway log files and to
export these files for analysis:

Diagnostics settings

Applying the additional logging setting requires the gateway to
be restarted but provides visibility to the specific queries
requested and the duration of their execution. In a typical

troubleshooting or analysis scenario, a gateway admin would
temporarily enable additional logging, execute a data refresh or
query from the Power BI service, and then export the gateway
log files to analyze this activity. Once the log files have been
exported, additional logging should be disabled to avoid reduced
query throughput.

Technically, the additional logging setting modifies the EmitQueryTraces and
TracingVerbosity properties of the following two XML configuration files,
respectively:
Microsoft.PowerBI.DataMovement.Pipeline.GatewayCore.dll
Microsoft.PowerBI.DataMovement.Pipeline.Diagnostics.dll

As an alternative to the gateway application setting, both configuration
files can be accessed and modified at the installation location of the
gateway, such as C:\Program Files\On-premises data gateway.

In the following example, a gateway log file with verbose logging
has been copied into Excel and filtered for a specific request ID:

Log file output

In the preceding example, a refresh process caused the SELECT *
FROM BI.vDim_Account query to be executed against an on-premises
source via the gateway. The duration of this query was 2.48
seconds (2,484 ms) per the final row containing the
FireActivityCompletedSuccessfullyEvent log event. Note that column
headers are not included in the log files and that the second
column of the logs (a GUID) is the Request ID. This is the
column that can be used to match a query with its completion
event and duration.

Performance Monitor counters
Windows performance-monitor counters, specific to both the
gateway service and the servers on which the gateway is running,
are helpful in assessing workloads relative to available resources.
For example, a BI team can determine whether a gateway server
has adequate memory available to support the scheduled
refreshes of large datasets. Likewise, the performance counters
specific to the On-premises data gateway can be used to identify
spikes or dips in query executions and failures throughout the
day. The results of this analysis could suggest adding a gateway
instance to a cluster or migrating a gateway instance to a server
with additional CPU cores.

The Windows Performance Monitor tool can be used to create a
collector set of the necessary counters, as shown in the following
image:

On-premises data gateway counters

As you can see in the preceding image, several of the same
counters are available per query type, such as ADO.NET,
ADOMD, OLEDB, and mashup. The ADO.NET counters are used
by DirectQuery connections and the mashup counters relate to
the refresh of imported datasets. Detailed descriptions of all
counters and types can be obtained via the Power BI docs
website under Gateways.

Power BI tools and services are well suited to integrating and
analyzing performance-counter data. A detailed paper describing
this solution, as well as a sample Power BI Desktop file, is
available on the Insight Quest blog at http://bit.ly/2Dssgbh.

http://bit.ly/2Dssgbh

DirectQuery datasets
For datasets built with DirectQuery connections to on-premises
sources, authorized users of the gateway source will receive the
following message when publishing from Power BI Desktop:

Gateway assigned to the DirectQuery dataset

It's essential that the data source settings (for example, server
name, database name) configured for the gateway data source
exactly match the entries used by the Power BI dataset (.PBIX).
Once the DirectQuery dataset has been published to the Power
BI service, new reports can be built on top of this dataset via the
Power BI service data source described in the Live connections
to Power BI datasets section of Chapter 11, Creating and
Formatting Power BI Reports.

Single sign-on to DirectQuery
sources via Kerberos
Many organizations have made significant investments in
scalable on-premises data sources and have implemented user
security rules/conditions in these sources. For these
organizations, it's often preferable to use DirectQuery data
connections that leverage both the resources of the source and
the custom security rules. To address this scenario, the On-
premises data gateway now supports a single sign-on feature
that passes the identity of the Power BI user to the data source
via Kerberos constrained delegation.

In the following image from the Manage gateways portal, the
single sign-on setting for a SQL Server data source is exposed:

Single sign-on for DirectQuery

By default, the single sign-on (SSO) feature is not enabled and
thus all DirectQuery queries (from any user) will execute via the
credentials specified in the source. If enabled, the user
principal name (UPN) of the user viewing content in the
Power BI service is mapped to a local Active Directory identity by
the gateway. The gateway service then impersonates this local
user when querying the data source.

Kerberos constrained delegation must be configured for the gateway and
data source to properly use the SSO for DirectQuery feature. This
involves changing the service account of the gateway to a domain
account, as discussed in the Configuration of on-premises gateway
section earlier in this chapter. Additionally, an SPN may be needed for
the domain account used by the gateway service and delegation settings
must be configured for this account as well. Detailed instructions on
configuring Kerberos constrained delegation can be found here: http://bit.l
y/2DsTI82.

Currently this feature is only available for SQL Server, SAP
HANA, and Teradata sources, but Oracle and other common
DirectQuery sources are planned.

http://bit.ly/2DsTI82

Live connections to Analysis
Services models
For on-premises SSAS models that Power BI users will access via
Live connections, an SSAS data source must be added in the
Manage gateways portal. Critically, the credentials entered for
this data source in the Manage gateways portal must match an
account that has server administrator permissions for the SSAS
instance. The following image, from SQL Server
Management Studio (SSMS), exposes the server
administrator accounts for the ATLAS instance of SSAS Tabular:

Analysis Services Server administrators

Both SSAS and Azure Analysis Services instances can be
accessed via SSMS. Additionally, the Analysis Server Properties
dialog from the preceding image can be accessed by right-
clicking the instance name. Identification of the Power BI user

by SSAS will only work if a server admin account is specified and
thus used when opening connections.

User authentication to SSAS is based on the EffectiveUserName
property of SSAS. Specifically, the user principal name (for
example, JenL@FrontlineAnalytics.onmicrosoft.com) of the Power BI user
is passed into this property and this email address must match a
UPN within the local Active Directory. This allows the SSAS
model to apply any row-level security roles built into the model
for the given Power BI user.

Azure Analysis Services refresh
To support the data refresh operations of Azure Analysis Services
models based on on-premises sources, an On-premises data
gateway resource is created in Azure and associated with the
Azure Analysis Services resource. As shown in the following
image, the gateway resource is located in the same region (North
Central US) as the Power BI service tenant:

On-premises data gateway resource in Azure portal

To create a gateway resource in Azure (for example,
FrontlineGateway), either search the Azure marketplace for On-
premises data gateway in the Azure portal or use the link (Create
a gateway in Azure) provided on the Status page of the On-
premises data gateway application. Like other resources in
Azure, an Azure subscription and resource group are required to
create and configure the gateway resource. However, the gateway
resource only stores metadata to reference an existing gateway

installation and thus there are no billing charges associated with
the gateway itself. The name of the existing (and running)
gateway should appear on the Installation name property of the
Create connection gateway blade in the Azure portal.

Once created, the gateway resource in Azure must be associated
with the Azure Analysis Services resource, as shown in the
following image:

Azure Analysis Services connected to gateway

In the preceding example, the AAS resource (frontline) has been
configured to use the FrontlineGateway resource via the On-
premises data gateway setting for AAS resources. The
FrontlineGateway, in turn, references an existing installation of
the On-premises data gateway. Because the AAS resource is

associated with the gateway in the Azure portal, it does not need
to be added as a data source in the manage gateways portal of
Power BI.

From a user authentication and row-level security standpoint,
Live connection queries against AAS provide the Azure Active
Directory account of the user. Therefore, the row-level security
models built into AAS models must reflect these AAD identities
to be enforced.

Dashboard cache refresh
Dashboard tiles based on import mode datasets are refreshed
when the dataset itself is refreshed in the Power BI service. For
dashboard tiles based on DirectQuery or Live connection
datasets, however, the Power BI service maintains a scheduled
cache refresh process for updating dashboard tiles. The purpose
of this cache is to ensure dashboards are loaded extremely
quickly since, as described in Chapter 13, Designing Power BI
Dashboards and Architectures, many users, such as executives,
exclusively rely on dashboards.

By default, the dashboard tile cache is refreshed once every hour.
As shown in the following image, owners of these datasets can
configure this refresh process to occur as frequently as every 15
minutes or as infrequently as once per week:

Scheduled cache refresh

In the preceding example, a Power BI dataset (AdWorksEnterpriseDQ)
containing a DirectQuery connection to an on-premises SQL
Server database has been published to an app workspace in
Power BI. The Scheduled cache refresh option will not appear for
datasets that import their data—these datasets can use the
scheduled refresh dialog described earlier in this chapter. Per the
settings dialog, the dataset is associated with an On-premises
data gateway (Frontline Gateway), thus allowing queries from
the Power BI service to reach the on-premises database.

It can be helpful to run a trace on the source system to capture the
volume and performance characteristics of the queries associated with

dashboard cache refreshes. If the dataset is used by several dashboards
with many tiles and/or complex tiles with many data points, the cache
refresh process can be expensive on the source system. The trace can be
started immediately prior to a scheduled cache refresh or, if only one
dashboard is being refreshed, prior to a manual dashboard tile refresh.

Switching the Refresh frequency to 15 minutes causes the queries
associated with each dashboard tile dependent on the
DirectQuery dataset to be submitted in 15-minute intervals, as
shown in the following image:

Dataset menu in Power BI service

In addition to the Last Refresh and Next Refresh columns,
dataset owners can also access the Refresh history from the same
dataset settings menu used to configure the Scheduled cache
refresh.

Users can also manually refresh dashboard tiles via the Refresh
dashboard tiles menu option. This option, exposed via the ellipsis in the
top-right corner of dashboards, also sends queries to the DirectQuery or
Live connection data source like the scheduled cache refresh.

Power BI reports (.PBIX files) containing either a Live connection
to an Analysis Services server (AAS or SSAS) or a DirectQuery
connection to the data source will be represented as distinct
datasets in the Power BI service. Power BI reports created based
on these published datasets will utilize the scheduled cache
refresh configured for the given source dataset. The Live
connections to Power BI datasets section in Chapter 11, Creating
and Formatting Power BI Reports contains details and
examples of these reports.

The optimal cache refresh frequency will depend on the business

requirements for data freshness, the frequency with which the
source database is updated, and the available resources of the
source system. For example, if the top priority of the source
system is OLTP transactions and the dashboard queries are
resource intensive, it may be preferable to limit the refresh
frequency to once a day. However, if the very latest data updates
are of top value to the business users and ample resources are
available to the source system, a 15-minute cache refresh
schedule may be appropriate.

Unlike dashboards, a cache is not maintained for Power BI
reports based on DirectQuery or Live connection datasets. These
reports issue queries as the user interacts with report visuals and
therefore can result in some latency. The degree of this latency
depends on many factors, including the hardware resources of
the data source, whether Power BI Premium capacity has been
provisioned, and the complexity or density of the report visuals
being analyzed. Chapter 19, Scaling with Premium and Analysis
Services is dedicated to scalability and performance-related
topics.

Summary
This chapter reviewed the primary planning and management
scenarios for the On-premises data gateway. This included
alternative-solution architectures requiring a gateway, methods
for distributing workloads across multiple gateways, and
ensuring high availability via gateway clusters. Additionally, this
chapter described the process of administering a gateway,
including the configuration of data sources and the authorization
of users or groups to utilize the gateway per source. Finally, the
primary tools and processes for troubleshooting and monitoring
the gateway were reviewed.

While this chapter focused on using the Power BI Cloud service
with on-premises data, the following chapter highlights the
option to deploy Power BI exclusively on-premises via the Power
BI Report Server. This includes the publication, refresh, and
management of Power BI reports on-premises as well as the
primary differences between the Power BI Report Server and the
Power BI service.

Deploying the Power BI Report
Server
The Power BI Report Server is a modern enterprise-reporting
platform that allows organizations to deploy, manage, and view
Power BI reports, in addition to other report types, internally.
The Power BI Report Server allows large numbers of users to
view and interact with the same reports created in Power BI
Desktop in a modern web portal and via the same Power BI
mobile applications used with the Power BI cloud service. The
Power BI Report Server addresses a current and sometimes
long-term need to maintain a fully on-premises BI solution that
includes both data sources and reports. Additionally, the Power
BI Report Server can be used in combination with the Power BI
service to support scenarios in which only certain reports need to
remain on premises.

The Power BI Report Server has been built on top of SQL
Server Reporting Services (SSRS), and therefore
organizations can continue to utilize existing paginated SSRS
reports and familiar management skills to easily migrate to the
Power BI Report Server. In addition to Power BI and paginated
reports, the Office Online Server (OOS) can be configured to
allow for viewing and be interacting with Excel reports in the
same report server portal, thus providing a consolidated hub of
BI reporting and analysis. Moreover, when provisioned with
Power BI Premium capacity, organizations can later choose to
migrate on-premises Power BI reports to dedicated capacity in
the Power BI service, without incurring an additional cost.

"Power BI Report Server is extending our journey of giving customers more

flexibility in terms of being able to deploy some of their workloads on-premises
behind their firewall."

 – Riccardo Muti, Group
Program Manager

This chapter reviews the primary considerations in planning and
deploying the Power BI Report Server. This includes feature
compatibility with the Power BI service, licensing and
configuration details, and an example deployment topology.
Additionally, management and administration topics are
reviewed, including the scheduled data refresh of Power BI
reports and monitoring server usage via execution log data.

In this chapter, we will review the following topics:

Planning for the Power BI Report Server

Installation and configuration of Power BI Report Server

Power BI Desktop for Power BI Report Server

Power BI Report Server Portal

Scheduled data refresh and Live connections

Power BI mobile applications

Power BI Report Server administration

Scaling Power BI Report Server

Planning for the Power BI
Report Server
Prior to any licensing or deployment planning, an organization
should be very clear on the capabilities of the Power BI Report
Server in relation to the Power BI cloud service. The Power BI
Report Server does not include many of the features provided by
the Power BI cloud service, such as the dashboards described in C
hapter 13, Designing Power BI Dashboards and Architectures, or
the apps, email subscriptions, Analyze in Excel, and data alert
features reviewed in Chapter 17, Creating Power BI Apps and
Content Distribution. Although new features are included with
new releases of the Power BI Report Server, the Power BI Report
Server is not intended or planned to support the features
provided in the Power BI cloud service.

Additionally, for organizations using SSRS, it's important to
understand the differences between the Power BI Report Server
and SSRS, such as the upgrade and support lifecycle.
Mapping the capabilities and the longer-term role of the Power
BI Report Server in relation to a current and a longer-term BI
architecture and cloud strategy is helpful in planning for the
Power BI Report Server.

The following list of five questions can help guide the decision to
deploy the Power BI Report Server:

Do some or all reports currently need to stay on-premises
and behind a corporate firewall?

Power BI Report Server is a fully on-premises
solution designed to meet this specific scenario

Alternatively, organizations can deploy the Power
BI Report Server to virtual machines provisioned
in Azure

Is SSRS currently being used?

Power BI Report Server includes SSRS and thus
allows a seamless migration from an existing
SSRS server

Paginated (.RDL) reports are not currently
supported in the Power BI service

Are the primary data sources for reports located on-
premises and expected to remain on-premises?

As an on-premises solution, the On-premises data
gateway is not required to connect to on-premises
sources

As discussed in the previous chapter, some degree
of query latency, hardware, and administrative
costs are incurred by using on-premises data
sources with the Power BI service

Are there features exclusive to the Power BI Service that

is needed?

The Power BI Report Server is limited to
rendering Power BI reports (.PBIX) files, as will be
discussed in the following section

Will large import mode Power BI datasets be needed or
will the Power BI reports use DirectQuery and Live
connections?

The size of files that can be uploaded to the Power
BI Report Server for Scheduled refresh is limited
to 2 GB

Additionally, unlike the Power BI service, a single
Power BI dataset cannot be used as a source for
other reports

With Power BI Premium capacity in the Power BI
Service, 10 GB and larger files (datasets) are
supported

Given these considerations, organizations with significant on-
premises investments or requirements should consider the
Power BI Report Server as at least part of their BI architecture.
One example of this is a large on-premises data warehouse with
many existing paginated (.RDL) SSRS reports built against it.

As described in the Hardware and user licensing section later in
this chapter, new Power BI reports deployed to the Power BI
Report Server can later be migrated to the Power BI cloud

service via the same licenses. For example, a group of related
Power BI reports initially published to a folder on the Power BI
Report Server could later be uploaded to an app workspace in
the Power BI service. The app workspace could be assigned
Power BI Premium capacity and thus the reports could be
distributed to all users, including Power BI Free users, via an
app, as per Chapter 17, Creating Power BI Apps and Content
Distribution. In addition to a straightforward migration path,
many features exclusive to the Power BI service, such as
dashboards, can leverage reports originally deployed to the
Power BI Report Server.

Feature differences with the
Power BI service
The Power BI Report Server renders Power BI reports (PBIX
files) for data visualization and exploration, just like the Power
BI web service. In terms of Power BI features and functionality,
this is the essential scope of the Power BI Report Server. For
users or organizations inexperienced with Power BI concepts
(datasets, reports, and dashboards) and the Power BI service,
these reports may be considered to be dashboards, and many of
the additional features provided by the Power BI service, such as
dashboards, app workspaces, and apps may not be known or
utilized.

Although viewing and interacting with Power BI reports is
clearly central to Power BI, Power BI as a Platform-as-a-
Service (PaaS) and Software-as-a-Service (SaaS) cloud
offering provides many additional benefits beyond the standard
infrastructure cost and maintenance benefits of a cloud solution.
These additional features support content management,
collaboration, and the managed distribution of content
throughout the organization. Prior to committing to the Power
BI Report Server, it's recommended to understand the role and
benefit of features exclusive to the Power BI service.

The following list of features is exclusive to the Power BI service:

Dashboards

Data Alerts and Notifications

Email Subscriptions to Dashboards and Reports

App Workspaces and Apps

Quick Insights

Natural Language Query (Q & A)

Content Packs

Analyze in Excel

Power BI Publisher for Excel

Streaming Datasets

ArcGIS Map Visual

R Custom Visuals

The most straightforward guide to the Power BI features
supported by the Power BI Report Server is the Power BI
Desktop application. With the exception of new Power BI
Desktop features (released in the last 1–3 months), which are not
yet available in the latest release of the Power BI Desktop version
optimized for the Power BI Report Server, almost all features in
Power BI Desktop, including the great majority of custom
visuals, are supported by the Power BI Report Server. One
additional and important exception to this, however, is row-level
security. As of the October 2017 release of the Power BI Report
Server, row-level security roles implemented in Power BI
Desktop, as described in Chapter 10, Developing DAX Measures
and Security Roles, are not supported in the Power BI Report
server.

Several of the Power BI service features not available to the

Power BI Report Server have been reviewed in earlier chapters,
such as dashboards (Chapter 13, Designing Power BI Dashboards
and Architectures, and Chapter 14, Managing Application
Workspaces and Content). Other features exclusive to the Power
BI service, including email subscriptions to dashboards and
reports, Power BI apps, and data alerts, are reviewed in the
following Chapter 17, Creating Power BI Apps and Content
Distribution. Finally, the ArcGIS Map Visual, which may be
added to the Power BI Report Server in 2018, was included in Cha
pter 12, Applying Custom Visuals, Animation, and Analytics.

Content packs of pre-built Power BI datasets, reports, and dashboards
for popular online services such as Google Analytics and Salesforce are
available from the Microsoft AppSource portal (http://bit.ly/2n5NB01) and via
the Get Data page of the Power BI service. These content packs, or apps,
developed and maintained by third parties, allow organizations to get
started quickly in analyzing this data with Power BI. Organizational
content packs developed within an organization for the purpose of
distributing content to users are being replaced by Power BI apps, as
described in the following chapter.

As per the Quick insights section of Chapter 12, Applying Custom Visuals,

Animation, and Analytics, certain Quick Insights features are now
available in Power BI Desktop. Additionally, Q & A (natural language
queries) is currently a preview feature in Power BI Desktop. Given the
availability of these features in Power BI Desktop, a future release of
Power BI Desktop optimized for the Power BI Report Server will very
likely include support for these features as well.

Since the Power BI Report Server has been built on top of SSRS,
a very mature and robust enterprise reporting platform, it
includes several capabilities not currently available in the Power
BI service. For example, paginated reports (.RDLs) developed by
tools such as Report Builder and SQL Server Data Tools
(SSDT) can be deployed to the Power BI Report Server but not
the Power BI service. Additionally, the mobile reports introduced
in SQL Server Reporting Services 2016 and built with the Mobile
Report Publisher application are also fully supported.

http://bit.ly/2n5NB01

Furthermore, if an Office Online Server (OOS) has been
deployed on-premises, Excel workbooks with external data
connections to sources such as SQL Server Analysis Services
(SSAS) can also be published to the Power BI Report server
portal and interacted with like other reports. The ability to view
and interact with Excel reports containing external data
connections is not currently available in the Power BI service,
but is expected in 2018. Additionally, there are plans to bring
SSRS reports (.RDL files) to the Power BI Service at some point in
the future.

Per the Dynamics 365 Spring 2018 Release Notes (https://aka.ms/bu
sinessappsreleasenotes), the ability to publish paginated SSRS reports
(.RDLs) to Power BI Premium capacity in the Power BI service is
expected later in 2018. This new capability will remove the
requirement of deploying and managing a Power BI Report
Server (or SSRS server) to support these report types. Chapter
19, Scaling with Premium and Analysis Services, contains
additional details on Power BI Premium capabilities exclusive to
the Power BI service.

https://aka.ms/businessappsreleasenotes

Parity with SQL Server
Reporting Services
A Power BI Report Server is 100% compatible with SSRS. A
Power BI Report Server can be thought of as a superset of an
SSRS server in the sense that both modern Power BI reports and
all SSRS features through the latest release of SSRS are included.
Therefore, it's not necessary to deploy both an SSRS report
server and a Power BI Report Server to support existing SSRS
workloads.

"There is no reason, except in some edge cases, for you to be running both SSRS and
Power BI Report Server."
 – Christopher Finlan, Senior Program Manager for Power BI Report Server

It's certainly possible to deploy the Power BI Report Server along
with an instance of SSRS. For example, the Power BI Report
Server could be dedicated to self-service BI reports built with
Power BI Desktop, while the SSRS server could be dedicated to
IT developed paginated (.RDL) reports.

For the majority of organizations, however, the Power BI Report
Server and its modern web portal will be used to consolidate all
report types.

There are three main differences between the Power BI Report
Server and SQL Server Reporting Services (SSRS):

Power BI Report (.PBIX) files can only be viewed from the
Power BI Report Server's web portal

Excel workbooks (.XLSX) can only be viewed from the
Power BI Report Server's web portal:

This requires the OOS, as described in the
Configuration section later in this chapter

The upgrade and support cycles are significantly shorter
for the Power BI Report Server:

A new version of the Power BI Report Server is
released approximately every 4 months

Each new version of the Power BI Report Server is
supported by Microsoft for 1 year

New versions of SSRS will continue to be tied to the release of
SQL Server. For example, SSRS 2017 was made generally
available (GA) on October 2nd, 2017, along with SQL Server
2017. Although the upgrade cycle has shortened for SQL Server,
it doesn't match the pace of innovation from Power BI's monthly
release cycles. Therefore, to make new Power BI features
available to customers with on-premises deployments, a new
Power BI Report Server is released approximately every 4
months.

Unlike versions of SSRS, which continue to receive support such
as cumulative updates for years following their release, support
for each Power BI Report Server release ends after one year.
Therefore, while upgrading to each new version of the Power BI
Report Server every 4 months is not required, organizations
should plan to upgrade within one year of each version's release
to maintain support. Additional information and considerations

on upgrade cycles are included in the Upgrade cycles section
later in this chapter.

Support for multiple instances per server represents one additional
difference between the Power BI Report Server and SSRS. Currently,
only one instance of the Power BI Report Server can be installed per
server. Therefore, unlike SSRS, virtual machines need to be configured if
multiple instances are required for the same server.

There are no plans to deprecate SQL Server Reporting Services
or replace it with the Power BI Report Server. However, given
the additional features exclusive to the Power BI Report Server
and the more frequent release cycle, there are strong reasons to
choose Power BI Report Server over SSRS going forward.
Additionally, an existing SSRS server can be easily migrated to
Power BI Report Server as discussed in the Migrating from SQL
Server Reporting Services section later in this chapter.

BI teams familiar with SSRS can quickly take advantage of
mature features, such as report subscription schedules and role-
based user permissions. For organizations running older
versions of SSRS, the significant features introduced in SSRS
2016, including the modern web portal and KPIs, can further
supplement their BI solution. In summary, the Power BI Report
Server allows organizations to continue to fully support existing
and new SSRS reports, while also enabling the self-service and
data visualization features of Power BI reports.

Data sources and connectivity
options
All three connectivity options for Power BI Reports (import,
DirectQuery, and Live connection) are supported by the Power
BI Report Server. As one example, corporate BI teams could
develop DirectQuery and Live connection reports based on a
Teradata database and a SQL Server Analysis Services model,
respectively. Business users with Power BI Pro licenses, however,
could import data from Excel and other sources to the Power BI
Desktop version optimized for the Power BI Report Server and
publish those reports to the Power BI Report Server.

Power BI reports deployed to the Power BI Report Server cannot
currently utilize a single Power BI dataset (PBIX file) as their
data source, as described in the Live connections to the Power BI
Datasets section of Chapter 11, Creating and Formatting Power BI
Reports. Given the resource limitations of the report server and
the important goals of reusability and version control, this
implies that DirectQuery and Live connection reports are
strongly preferred for the current version of Power BI Report
Server. However, the ability to reuse a published Power BI
dataset (PBIX file) as a source for new Power BI reports is
planned for a future release of the Power BI Report Server. Once
released, BI teams will be able to isolate dataset design topics
and users (such as relationships or DAX measures) from report
authors just like with the Power BI service.

Imported Power BI datasets are currently limited to 2 GB file
sizes. This compares to the 10 GB file size limit for Power BI
datasets published to Premium capacity in the Power BI server.

Therefore, if it's necessary to import data to a Power BI report
for deployment to the Power BI Report Server; only include the
minimal amount of data needed for the specific report.

Avoid duplicating imported data across many reports by leveraging
report pages, slicer visuals, and bookmarks. If import mode reports are
required, such as when data integration is needed or when an Analysis
Services model is not available, look for opportunities to consolidate
report requests into a few PBIX reports that can be shared.

One advantage of the Power BI Report Server is that, as an on-
premises solution, the On-premises data gateway section
described in Chapter 15, Managing the On-Premises Data
Gateway is not needed. The report server service account,
running either as the Virtual Service Account or as a domain user
account within the local Active Directory, will be used to connect
to data sources. Additional information on this connectivity,
including Kerberos constrained delegation, is included in the
Installation and Configuration section.

Hardware and user licensing
The rights to deploy the Power BI Report Server to a production
environment can be obtained by purchasing Power BI Premium
capacity or via a SQL Server Enterprise Edition with the
Software Assurance agreement. Power BI Premium is the
primary and recommended method as this includes both Power
BI service (cloud) dedicated capacity and the Power BI Report
Server at the same cost. For example, a Power BI Premium P2
SKU includes 16 v-cores of dedicated capacity in the Power BI
service, as well as the right to deploy the Power BI Report Server
to 16 processor cores on-premises. Furthermore, the cores
provisioned via Power BI Premium can be allocated to on-
premises hardware; however, the organization chooses them,
such as one Power BI Report server with all 16 cores, or two
Power BI Report servers with eight cores, each in a scale-out
deployment.

A Power BI Premium P2 SKU is highlighted in the following
screenshot from the Purchase Services page of the Office 365
admin center:

Power BI Premium SKU

As shown here, premium capacities represent a subscription-
based model, such as $10,000 per month with an annual
commitment. Currently, a month-to-month P1 SKU with eight v-
cores (P1 for Students) is available, which doesn't require an
annual commitment.

By licensing Power BI Report Server via Power BI Premium
capacity, an organization can choose to migrate Power BI reports
to the Power BI service (cloud) at a future date. For example,
some or all of the Power BI reports deployed to the Power BI
Report Server in 2018 could be migrated to app workspaces
hosted in dedicated Power BI Premium capacity within the
Power BI service in 2019. Additionally, as described in the
Hybrid Deployment Models section later in this chapter, an
organization could allow certain solutions to be developed with
the dedicated Premium capacity in the Power BI cloud service,
while other reports could remain on-premises on the Power BI
Report server.

Once Power BI Premium capacity has been purchased, a product
key required to install the report server will be available in the
Power BI admin portal. The process for retrieving this key from
within the Power BI service is included in the Installation
section later in this chapter. Additionally, the details of Power BI
Premium including the management of premium (dedicated)
capacities and the additional capabilities enabled by Premium
capacities for deployments to the Power BI service are included
in Chapter 19, Scaling with Premium and Analysis Services.

As an alternative to licensing via Power BI Premium,
organizations with SQL Server Enterprise Edition with Software
Assurance can use their existing SQL Server licenses to deploy
Power BI Report Server.

One of the benefits of the Software Assurance program has been
to provide access to new versions of SQL Server as they're
released, and this benefit has been extended to include the
Power BI Report Server. For example, if an organization has
already licensed 24 cores to run SQL Server Enterprise Edition,
with a Software Assurance agreement they could allocate 8 of
those 24 cores to a server for running Power BI Report Server.
Just like current SQL Server licensing, additional SQL Server
products (such as SQL Server Integration Services) could also be
deployed on the same eight-core server. It's essential to realize
that, unlike Power BI Premium, this licensing method does not
provide access to the many additional features exclusive to the
Power BI (cloud) service described earlier in this chapter.

Pro licenses for report authors
In addition to licensing for the Power BI Report Server, each
user who will be publishing Power BI reports (PBIX files) to the
report server's web portal will also require a Power BI Pro
license. In most large deployments, these are typically a small
number of BI report developers and self-service BI power users,
as described in the Power BI Licenses section of Chapter
7, Planning Power BI Projects.

Users who only view and optionally interact with reports
published to the Power BI Report Server do not require Power BI
Pro licenses or even Power BI Free licenses. This licensing
structure (Premium Capacity + Pro licenses for report authors)
further aligns the Power BI Report Server with the Power BI
service. For example, similar to the Hybrid deployment models
described in the following section, a report author with a Power
BI Pro license would have the ability to publish one report to the
Power BI Report Server and a different report to an app
workspace in the Power BI service.

Alternative and hybrid
deployment models
The Power BI Report Server, along with the ability to embed
Power BI content into custom applications, gives organizations
the option to choose a single deployment model (such as Power
BI Report Server only) or a combination of deployment models
in which both the Power BI Report Server and the Power BI
service are utilized for distinct scenarios or content.

With both the Power BI service and the Power BI Report Server
available via Power BI Premium capacity, an organization could
choose to match the deployment model to the unique needs of a
given project, such as using the Power BI Report Server if
traditional paginated reports are needed, or if the reports need to
remain on-premises for regulatory reasons.

For example, one Power BI solution for the marketing
organization could be completely cloud-based, such as using
Azure SQL Database as the source for Power BI reports and
dashboards hosted in the Power BI service. A different solution
for the sales organization could use the On-premises data
gateway to query a SQL Server Analysis Services model (on-
premises) from the Power BI service, as described in Chapter 15,
Managing the On-Premises Data Gateway. Finally, for
scenarios in which both the data source(s) and the
report/visualization layer must remain on-premises, such as for
sensitive reports used by the human resources organization.
Power BI reports developed against on-premises sources could
be deployed to the Power BI Report server.

The following diagram describes the essential architecture of
three distinct Power BI solutions: cloud only, cloud and on-
premises, and on-premises only:

Power BI solutions by deployment model

In this example, Power BI reports and dashboards developed for
the marketing department are hosted in the Power BI service
and based on an Azure SQL Database. The sales team also has
access to dashboards and reports in the Power BI service, but the
queries for this content utilize a Live connection to an on-
premises SSAS model via the On-premises data gateway. Finally,
Power BI reports developed for the human resources department
based on on-premises data sources are deployed to the Power BI
Report Server.

BI solutions that utilize PaaS and SaaS cloud offerings generally
deliver reduced the overall cost of ownership, greater flexibility

(such as scale up/down), and more rapid access to new features.
For these reasons, plans and strategies to migrate on-premises
data sources to equivalent or superior cloud solutions, such as
Azure SQL Data Warehouse and Azure Analysis Services, is
recommended.

If multiple Power BI deployment models are chosen, BI teams
should understand and plan to manage the different components
utilized in different models. For example, identify the
administrators, hardware, and users of the On-premises data
gateway. Likewise, identify the Power BI service administrators
and the tenant settings to apply, as described in Chapter
18, Administering Power BI for an Organization. Additionally,
as discussed in the Upgrade cycles section later in this chapter,
organizations can choose either a single Power BI Desktop
version to utilize for both the Power BI Report Server and the
Power BI service, or run separate versions of Power BI Desktop
side by side.

BI teams responsible for managing these more complex
deployments should have monitoring in place to understand the
utilization and available resources of the alternative deployment
models. For example, rather than adding resources to a Power BI
Report Server or adding another report server in a scale-out
deployment, certain Power BI reports could be migrated to
available to premium capacity in the Power BI service. The
Power BI Premium capacities section in Chapter 18, Administering
Power BI for an Organization, includes details on the premium
capacity monitoring provided in the Power BI service.

Report Server reference
topology
The four main components of a Power BI Report Server
deployment include the report server instance, the Report
Server Database, Active Directory, and the data sources
used by the reports. The Active Directory domain controller is
needed to securely authenticate requests by both the data
sources and the report server.

In the following diagram, a SQL Server database and an SSAS
Tabular model are used as the data sources by the report
server:

Power BI Report Server reference topology

In the diagram, the Report Server Database is hosted on a
separate server than the Power BI Report Server. This is
recommended to avoid competition for resources (CPU,
memory, and network) between the Power BI Report Server

and the SQL Server database engine instance required for the
Report Server Database. Additional information on the
Report Server Database and configuring this remote
connection is included in the following sections.

Installation
Once capacity (cores) to deploy the Power BI Report Server has
been obtained, teams can prepare to install and configure the
environment by downloading the report server software and the
version of Power BI Desktop optimized for the Power BI Report
Server.

Both the report server installation software and the report server
version of Power BI Desktop can be downloaded from the
Microsoft download center (http://bit.ly/2As4E4w), as shown in the
following screenshot:

Power BI Report Server installation files

Here, the Details menu exposes the version of the software
associated with the given release. In this example, the version
14.0.600.442 corresponds to the October 2017 version of the
Power BI Report Server. The Advanced download options link at
the top of the Power BI Report Server site (https://powerbi.microsoft.c
om/en-us/report-server) also links to the MS download center.

To install Power BI Report Server to a production environment,

http://bit.ly/2As4E4w
https://powerbi.microsoft.com/en-us/report-server

a product key will need to be obtained from either the Power BI
service or the Microsoft Volume Licensing Service Center.
Additionally, teams should be aware of hardware and software
requirements and other configuration settings, as described in
the following sections.

Hardware and software
requirements
An instance of the SQL Server Database Engine from 2008 or
later must be available to configure the Power BI Report Server.
Each Power BI Report Server instance, such as ATLAS\PBIRS
requires both a Report Server Database and a related report
server temporary database on the same instance of the database
engine. The Report Server Database stores content, such as
reports, schedule definitions, folders, data sources, and the
credentials for report data sources. The report server temporary
database stores cached reports, session and execution data, and
work tables generated by the report server.

Both the Report Server Database and the report server temporary
databases should be regularly backed up but not modified or tuned. In a
restore operation, if the temporary database is not backed-up, it will
have to be recreated. If a backed up temporary database is used in a
restore operation, the contents of the database should be deleted and the
report server windows service should be restarted.

The Power BI Report Server (and SSRS) also requires access to a
Read-Write Domain controller to properly administer the
service. The Netdom command-line tool for Windows Server can
be used to determine whether the domain controller is read-only
or read-write. Specifically, the netdom query dc command will return
only writable domain controllers.

For the report server instance machine, an operating system of
Windows Server 2012 or later is required, as is 1 GB of RAM, 1
GB of available hard-disk space, and an X64 processor with a
clock speed of 1.4 GHz or higher. 4 GB of RAM and an X64
processor with a 2.0 GHz or a faster clock speed is

recommended. Additional hard disk space will be required on
the database server hosting the Report Server Database and the
temporary database.

Analysis Services Integrated
The same columnar, in-memory OLAP database engine used by
Analysis Services Tabular models and Power BI datasets is now
built into the Power BI Report Server. This engine is used to
render Power BI reports containing imported data (import
mode) and DirectQuery connections. Therefore, if import mode
Power BI datasets (PBIX files) will be deployed to the report
server, especially large import mode files (100 MB+), a
significantly greater amount of RAM will be needed on the server
hosting the Power BI Report Server instance than typical
reporting services deployments. Additionally, the Scheduled
refresh operations for these large import mode reports will
require both RAM and CPU resources, and this should be
planned for.

The requirement for additional RAM could be significantly mitigated if
the Live connections to Power BI datasets feature described in Chapter
11, Creating and Formatting Power BI Reports, is made available in a
future release of the Power BI Report Server. In this scenario, similar to
Power BI service deployments, a single import mode dataset (PBIX file)
and its data refresh process could support many Power BI reports.

Alternatively, if the Power BI reports deployed to the Power BI
Report Server will use Live connections or DirectQuery
connections to data sources, the Power BI Report server will
have significantly lower resource requirements. As with
deployments to the Power BI service, the main driver of
performance for Live connection and DirectQuery reports will be
the data source receiving the query requests from the Power BI
Report Server.

Retrieve the Report Server
product key
If Power Premium capacity has been purchased, the Power BI
Report Server product key can be retrieved from the Power BI
admin portal. The Power BI admin portal can be accessed by
either an Office 365 global administrator or a user assigned to
the Power BI service administrator role. For these users, a link to
the Admin portal will be exposed from the gear icon in the top-
right corner of the Power BI service:

Power BI Admin portal link

The Power BI service administrator role and the assignment of
this role in Office 365 were introduced in the Power BI Project
roles section of Chapter 7, Planning Power BI Projects.
Additionally, Chapter 18, Administering Power BI for an
Organization, provides granular details on the Tenant settings
available in the Power BI Admin portal and other topics related

to governing Power BI deployments.

In the following screenshot, a Power BI service administrator has
accessed the Capacity settings menu of the Admin portal:

Power BI admin portal: Capacity settings

Clicking the Power BI Report Server key icon on the far right of
the Capacity settings menu launches a dialog containing the key.
This 25-character key value can be copied and used to complete
the installation of the server:

Installation of Power BI Report Server

If Power BI Report Server is being licensed via SQL Server
Enterprise Edition with Software Assurance, the product key can
be downloaded from the Microsoft Volume Licensing
Service Center (VLSC) via the following link: http://bit.ly/2rqefW
1.

An instance of the SQL Server Database Engine is not required to
complete the standalone installation of the Power BI Report
Server. However, as discussed in the Hardware and software
requirements section, a SQL Server database engine instance is
required to configure the report server. The report server is not
available until it's been configured, as described in the
Configuration section.

http://bit.ly/2rqefW1

Migrating from SQL Server
Reporting Services
There is not an in-place upgrade from SSRS to the Power BI
Report Server. However, migrating an existing instance of SSRS
running in Native mode to Power BI Report Server can be
accomplished via the following steps:

1. Back up the database, application, and configuration files
of the existing SSRS instance:

1. The encryption key of the SSRS instance should
also be backed up

2. The configuration files can be found within the
SQL Server installation directory (<install
directory>\Reporting Services\Report Server), as shown in
the following screenshot:

Reporting Services config

The default installation directory for SSRS is
C:\Program Files\Microsoft SQL Server\MRS13.MSSQLSERVER

2. Clone the Report Server Database hosting the reports for
the instance of SSRS.

3. Install the Power BI Report Server instance via the
PowerBIReportServer.exe file described earlier in this section;
this installation can be on the same server as the existing
SSRS instance.

4. Configure the Power BI Report Server instance to connect
to the cloned database via the Report Server
Configuration Manager application:

1. Additionally, also from the Report Server
Configuration Manager, restore the backed-up
encryption key

2. The reports from the existing SSRS instance will
then appear in the Power BI Report Server web
portal

3. The Report Server Configuration Manager is
included with the installation of Power BI Report
Server

The following screenshot from Report Server Configuration
Manager gives the option to modify the database of the
ATLAS\PBIRS Power BI Report Server instance:

Report Server Configuration Manager

In scenarios where the hardware or topology of a Power BI
Report Server deployment needs to change, the same four-step
migration process outlined here applies when migrating an
instance of Power BI Report Server to a different server. The only
exception is that unlike the SSRS (Native mode) to Power BI
Report Server migration, new and existing instances of Power BI
Report Server must be installed on separate servers.

Migrating from SSRS instances in SharePoint-integrated mode is
more complex, as it involves copying content from the
SharePoint environment to the Power BI Report Server via
report server command-line utilities, such as rs.exe. Of course, if
the volume of reports (.RDL files) to be migrated is limited, the
files could be downloaded manually. A sample script for copying

SharePoint content to a report server and further documentation
on this process is available at the following URL: http://bit.ly/2DoBI
s9.

http://bit.ly/2DoBIs9

Configuration
Once the standalone installation of the new report server is
complete (via the PowerBIReportServer.exe file), it's necessary to
configure the report server with the Report Server Configuration
Manager. This tool can be found within the Microsoft Power BI Report
Server folder and includes an interface to 10 distinct groups of
settings.

Several of these settings are outside the scope of this chapter, but
configuring the following four are essential to make a report
server operational:

Service Account

Web Service URL

Web Portal URL

Database

Default values are provided for the Web Service URL and Web
Portal URL, such as a TCP Port of 80 and the URL of the web
portal, respectively. When these four settings have been
configured correctly, the Power BI Report Server portal should
be accessible from a web browser, as shown in the following
screenshot:

Power BI Report Server portal

The web portal for the Power BI Report Server instance here
(ATLAS\PBIRS) uses the default URL (<server>/reports) and the
default brand package of colors and a logo. Users assigned to the
system administrator role of the report server can apply a
custom brand package, such as a corporate logo and color
scheme, by accessing the Site settings item from the web portal,
as shown in the following screenshot:

Power BI Report Server portal: Settings

Details on developing a brand package to upload and apply to a
Power BI Report Server portal are included at the following
URL: http://bit.ly/2F35QcO.

http://bit.ly/2F35QcO

Service Account
As discussed in the Power BI Report Server reference topology
section earlier in this chapter, the database server used to host
the Report Server Database is usually a separate machine than
the report server instance. Therefore, a domain account or a
service account with network access must be used to support the
remote connection from the report server to the database server
containing the Report Server Database. The Service Account can
be modified via the top tab of the Report Server Configuration
Manager, as shown in the following screenshot:

Report Server Service Account

The Virtual Service Account is selected as the default service
account. If the Report Server Database is created on the same
machine (such as ATLAS) as the report server instance, this
account should have no issues. However, as shown in the
preceding screenshot, a Network Service account or a domain
account can be specified as well, which can access the Report
Server Database on a remote server. Additional details and
considerations on configuring a Report Server Database
connection are included at the following URL: http://bit.ly/2F5vXA1.

http://bit.ly/2F5vXA1

Remote Report Server Database
If a remote database engine instance is being used, TCP/IP
network connectivity will need to be enabled.

This can be accomplished by logging on to the database server
and opening the SQL Server Configuration Manager tool, as
shown in the following screenshot:

SQL Server Configuration Manager: TCP/IP

Per the screenshot, the SQL Server Network Configuration
dropdown menu provides access to the protocols of the database
instance (MSSQLSERVER). Once the TCP/IP protocol has been
enabled (right-click | Enable), the database instance will need to
be restarted. This option is available from the SQL Server
Services menu, as shown in the following screenshot:

SQL Server Configuration Manager: Restart service

Finally, the port that the SQL Server instance listens on will need
to be opened. This is typically port 1433 for TCP/IP connections
for the default SQL Server database instance.

Office Online Server for Excel
Workbooks
One of the most exciting Power BI Report Server features
introduced in 2017 was the ability to publish and view Excel
workbooks on the report server portal. Although Power BI
Desktop is increasingly the preferred choice for data analysis,
Excel workbooks and particularly Excel connections to SQL
Server Analysis Services (SSAS) models are still very
important to many business users as well. Having both Excel and
Power BI in the same portal, in addition to paginated reports
(.RDLs) gives BI teams the flexibility to meet many different needs
from the same solution.

The Office Online Server (OOS) must be installed to enable
Excel online functionality in the report server. The full process
and technical details for deploying the Office Online Server are
available at MS DOCs via the following URL: https://docs.microsoft.c
om/en-us/power-bi/report-server/excel-oos.

If SQL Server Analysis Services is used as a data source, the account for
the Office Online Server should be added as a server administrator for
the instance of SSAS. SSAS admin accounts and how connections to SSAS
models via these accounts enable row-level security roles to be applied to
business users was described in the Live connections to Analysis Services
models section of Chapter 15, Managing the On-Premises Data Gateway.

From a Power BI Report Server configuration perspective, the
Office Online Server Discovery Endpoint URL must be added
within the Advanced properties of Site settings as shown in the
following screenshot:

https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos

Report Server portal: Site settings

This URL is the InternalUrl used when deploying the OOS server,
followed by /hosting/discovery. As described at the beginning of this
section, Site settings (Gear icon | Site settings) can only be
accessed by users assigned to the System Administrator role.

Upgrade cycles
A new version of the Power BI Report Server is released
approximately every 4 months. For example, the June 2017
release was followed by an October 2017 version, which included
additional features, such as support for imported data in Power
BI reports. As of this writing, the next version of Power BI
Report Server (following October 2017) will likely be released in
the first quarter of 2018. This new version is expected to
incorporate the features introduced in the monthly updates to
Power BI Desktop in Q4 of 2017, such as the Bookmarks feature
described in Chapter 12, Applying Custom Visuals, Animation, and
Analytics.

The following diagram describes the support provided for three
hypothetical releases of the Power BI Report Server (October of
2017, February of 2018, and June of 2018):

Support for Power BI Report Server releases

Per the diagram, a new release and version (for example,
February 2018) are made available approximately four months
following the prior version (from October 2017 to February 2018,

from February 2018 to June 2018). The latest version of the
Power BI Report Server receives both security and critical
updates until a new version is available.

At that point, only security updates will be made available for the
remainder of the 12 months. Therefore, assuming a new version
is released in June of 2018, organizations with the February
2018 release would receive security updates from June of 2018
through February of 2019. At a minimum, these organizations
would want to upgrade their environment prior to February of
2019 to maintain security support.

The upgrade cycle is one of the reasons for choosing the Power BI service
as this process is managed by Microsoft. For example, new features are
automatically added to the Power BI service each month and users can
update to the latest release of Power BI Desktop automatically via the
Windows Store in Windows 10 operating systems. The main reason
Power BI Report Server is not released more frequently, such as every 2
months, is that most IT organizations will not want to upgrade their BI
environments more than three to four times per year. Some
organizations are expected to skip one or two of the releases per year to
coincide with their internal upgrade policies and schedules.

With each release of the Power BI Report Server, a new version
of the Power BI Desktop optimized for this version of the Power
BI Report server is also released. This is a distinct application
from the Power BI Desktop application, which can be
downloaded directly from PowerBI.com and is described more fully
in the following section.

To avoid report rendering errors, it's strongly recommended to
synchronize the deployment of the Power BI Report Server with
its associated version of the Power BI Desktop. For example,
once an upgrade to the February 2018 version of the Power BI
Report Server is complete, the February 2018 version of Power
BI Desktop optimized for the Power BI Report server will be
installed on users machines.

https://powerbi.microsoft.com/en-us/

Report Server Desktop
Application
As shown in the Installation section earlier, a
PowerBIDesktopRS_x64.msi file is also available for download from the
MS Download center. This is the application used to create
Power BI reports to be published to this version (October 2017)
of the Power BI Report Server.

As shown in the following screenshot, this application can be
distinguished from the standard Power BI Desktop via the title
bar (here, October 2017) and the Save As menu:

Power BI Desktop optimized for Power BI Report Server

As suggested by the Save as menu in the preceding screenshot, a

report created via the Power BI Report Server optimized
application can be saved directly to the report server. In other
words, a PBIX file doesn't necessarily have to be saved to a user's
machine—the Power BI Report Server can serve as a network file
share. If a report needs to be modified, the user (with a Power BI
Pro license), could open the file directly from the web portal
described in the following section and save their changes back to
the report server.

At some point in the future, a single version of Power BI Desktop
that can be used for both the Power BI service and the Power BI
Report Server may be released. This has been identified as an
important goal that Power BI teams are currently working
through, though no timelines have been suggested as of this
writing.

Running desktop versions side
by side
It's possible to install and run both versions of Power BI Desktop
(standard and Report Server optimized) on the same machine.
This can be useful in organizations deploying reports to both the
Power BI service and the Power BI Report server, as described in
the Hybrid deployment models section.

For example, the standard Power BI Desktop application could
be used to create a new report for an app workspace in the Power
BI service, which utilizes the very latest features. The report
server optimized version, however, would be used to create or
edit reports that are deployed to the Power BI Report Server.

In the following screenshot from a Windows 10 machine, both
versions of Power BI Desktop are pinned to the Start menu:

Side-by-side Power BI Desktop

In the preceding screenshot, hovering over the icon or just
observing the three dots within the application tile makes it easy
to distinguish the applications. As an alternative to running both
applications side by side, an organization could choose to
exclusively use the Power BI Report Server-optimized version of
Power BI Desktop for reports published to both the Power BI
service and the Power BI Report Server. This single application
approach could simplify the management of the overall
deployment but would prevent the utilization of the latest
features available in the standard version of Power BI Desktop.

Report Server Web Portal
With the report server installed and configured, Power BI and
other types of reports can be published or uploaded to the report
server. This content can then be managed, organized into
folders, and viewed by users from web browsers and the Power
BI mobile application.

In the following screenshot, nine report items have been
published to the Home page of the web portal:

Power BI Report Server Web Portal

As illustrated here, Power BI reports can be easily distinguished
from other report types and users can mark reports as favorites
(star icon) for quick access from the Favorites page.

KPIs are created exclusively in the web portal via the New dropdown at
the top. Paginated reports (.RDL files) can be created with the Report
Builder application and with Report Server projects in SQL Server
Data Tools (SSDT) for Visual Studio. Additionally, Excel workbooks
can be uploaded and the Mobile Report Publisher application can be
used to create and publish mobile reports (.rsmobile files).

Clicking a Power BI report, such as the Customer Sales Report,

opens this report in the browser and provides the same
interactive experience of filtering and cross-highlighting
available in Power BI Desktop and the Power BI service.

Scheduled data refresh
Power BI reports built with a DirectQuery or Live connection to
their data sources execute their queries when the report is
accessed by users. For import mode Power BI reports, a
Scheduled refresh can be configured from the Manage page, as
shown in the following screenshot:

Scheduled refresh of Power BI report

The Manage page for a report can be accessed via the ellipsis
(three dots) of the report icon or via right-clicking. A custom
refresh schedule can be configured specific to a given report, or
alternatively, a shared scheduled can be created in the Site
settings menu (Gear icon | Site settings). In the preceding
example, the Product Sales Report has been assigned to a shared
schedule used by other import mode sales reports.

Given the RAM and CPU resources required to complete the refresh
process for large import mode Power BI datasets, separate schedules
may be configured to split this workload. Additionally, once the feature
is available, a single Power BI dataset should be used as the source for
other Power BI reports thus eliminating the need to refresh multiple files.

The refresh schedules created in the Power BI Report Server's
web portal are implemented as SQL Server Agent jobs. The
properties of these jobs (schedule and owner) can be accessed
from SQL Server Management Studio (SSMS).

Data source authentication
In addition to configuring a Scheduled refresh, report server
administrators can use the Manage page to modify the data
source properties of a report. For example, Power BI reports
based on Live connections to SQL Server Analysis Services
(SSAS) models will attempt to access the SSAS source as the
user viewing the report by default. However, assuming that the
SSAS instance is installed on a separate machine than the Power
BI Report Server, Kerberos Constrained Delegation (KCD)
is required for this impersonation to function. To enable this
data source connection without KCD, while still respecting any
row-level security defined in the SSAS model, an administrator
can modify the data source properties of the report.

In the following screenshot from the Manage report page, a
specific user credential is specified for accessing an SSAS
source:

Manage report data source properties

With the check mark option enabled as in the preceding
screenshot, once a connection has been opened to the SSAS
model via the credential specified (ATLAS\Brett Powell), the identity
of the user viewing the report can be passed to the source. In this
scenario, the credential specified should be a server
administrator for the source SSAS instance, thus enabling row-
level security to be applied to the user viewing the report.
Information on the SSAS server administrator role and user
impersonation via the EffectiveUserName property is included in the
Live connections to Analysis Services Models section of Chapter 15,

Managing the On-Premises Data Gateway. Additionally, the
following URL contains information on KCD in Windows Server
2012 (http://bit.ly/2DMCKCj).

http://bit.ly/2DMCKCj

Power BI mobile applications
The same Power BI mobile applications for iOS, Android, and
Windows platforms used to access content published to the
Power BI service can also be used with the Power BI Report
Server. As shown in the following screenshot, the user has
opened the Settings menu via the global navigation button (≡) to
connect to a report server:

Power BI mobile app: Settings

From the global navigation page, the Settings menu can be
accessed via the Gear icon at the top of the page. Clicking
Connect to server opens a page to enter the report server address
and to optionally provide a friendly name for the server, such as
AdWorks Report Server . The server address entered should
follow one of two formats:

http://<servername>/reports
https://<servername>/reports

The connection between the mobile application and the report
server can be created by opening a port in the firewall, being on
the same network (or VPN), or through a Web Application Proxy
from outside the organization. Information on configuring
OAuth authentication via Web Application Proxy is available at
the following URL http://bit.ly/2EepW4J.

Regardless of the platform (iOS or Android), up to five concurrent
connections can be created to different report servers. Each report server
connection will appear in the Settings menu. Additionally, the Favorites
menu will display reports and content marked as favorites, whether that
content is hosted on a Power BI Report Server or in the Power BI service.

From a business user or consumption standpoint, the Phone
Layout and the mobile optimizations described in the Mobile
Optimized Reports section of Chapter 11, Creating and Formatting
Power BI Reports, are reflected in Power BI reports accessed
from the Power BI mobile app. Additionally, the KPIs that can be
created in the Power BI Report Server's web portal and the
mobile reports created via the Mobile Report Publisher
application can also be viewed from the Power BI mobile app.

http://bit.ly/2EepW4J

Report server administration
BI teams deploying the Power BI Report Server will want to limit
user access to specific reports and groups of reports contained in
folders. For example, users or groups of users in Active
Directory (AD) will be granted the right to view certain Power
BI reports, while other users or groups will have the right to edit
content. Additionally, BI teams will be interested in
understanding the usage and performance characteristics of the
content deployed to the Power BI Report Server.

The Power BI Report Server inherits mature role-based
permission features and the execution history log data of SSRS.
For more granular analysis of report server activity,
administrators can access the Report Server Service Trace Log,
the Windows Application Log, and Windows Performance
Counters. Additional details on these sources are available at the
following URL: (http://bit.ly/2DFed29).

http://bit.ly/2DFed29

Securing Power BI report
content
Several built-in security roles are available to assign to users or
groups of users. This security assignment can be scoped at the
folder level and is by default inherited by all reports within that
folder or assigned to a specific report.

In the following screenshot, a security group (AdWorksSales) is
assigned to the Browser role for the Product Sales Report:

Role security in Power BI Report Server

The security configuration page for both reports and folders can
be accessed via the Manage page, as described in the Scheduled

data refresh section earlier in this chapter. By default, the
BUILTIN\Administrators group is assigned to a System
Administrator system-level role and the Content Manager item-
level role of the Home folder.

Security roles can also be created and customized in SQL
Server Management Studio (SSMS). In the following
example, a new user role is created that provides the same
permissions as the default Browser role (such as View Reports),
but also enables users to manage the comments posted to
reports:

Power BI Report Server Security Roles

As shown in the preceding screenshot, the new role (Browser with
Comment Management), is allowed to perform seven tasks including
managing comments. There are 18 tasks, available to define a
user role, which allow users to create, view, and manage report
server content. This customization, along with default item level
inheritance of a parent item's security, provides report server

administrators with robust controls to implement role-based
security.

Execution logs
Administrators of Power BI Report Servers can query and
potentially build report server monitoring reports on top of
execution log data maintained within the Report Server
Database. This data, which is stored in the ExecutionLogStorage table,
is exposed via Views, such as dbo.ExecutionLog3, and includes all
essential attributes of report server execution history. This
includes the report requested, the user requesting the report, the
time, and the data size of the activity.

The names of the Report Server Database and its host server can
be found via the Database page of the Report Server
Configuration Manager application, as shown in the following
screenshot:

Report Server Configuration Manager: Database

In this example, any ad hoc analyses or standard monitoring
reports based on execution log data will need to access the
ReportServerPBI SQL Server database hosted on the ATLAS

server. As described in the Report Server reference topology
section, the Report Server Database is usually hosted on a
separate server than the instance of the Power BI Report Server
(ATLAS\PBIRS).

In the following screenshot from SQL Server Management
Studio (SSMS), the ExecutionLog3 view of the ReportServerPBI
database is queried to retrieve execution history:

Report server execution log views

As shown in the preceding screenshot, the Format field can be used
to query for specific report types, such as Power BI (such as
PBIX). The list of columns available in the execution log
view and their descriptions are documented at the following
URL: (http://bit.ly/2nforva).

The ExecutionLog and ExecutionLog2 views were created in older versions of
SSRS. Therefore, if no dependencies exist on these views, ExecutionLog3 is
recommended.

By default, log entries are stored for 60 days. However, report
server admins can modify this setting via the Logging page of
Server Properties, as shown in the following screenshot:

http://bit.ly/2nforva

Power BI Report Server Logging properties

Server properties are accessible by right-clicking on the context
menu of the Power BI Report Server instance in SSMS. As
described in the Report Server reference topology section, the
report server instance and the Report Server Database (which
stores the log data) are usually on separate physical servers.

Scale Power BI Report Server
Both scale-up and scale-out options are available to Power BI
Report Server deployments. In a scale-up scenario, additional
CPU cores can be provisioned via Power BI Premium capacity or
an existing SQL Server Enterprise Edition with Software
Assurance agreement. For example, if 16 cores were obtained via
Power BI Premium P2 SKU, an additional 8 cores could be
purchased via a P1 SKU. Additionally, particularly if import
mode Power BI datasets are used, additional RAM can be
installed on report servers.

In a scale-out deployment, multiple instances of Power BI
Report Server are installed on separate machines. These
instances share the same Report Server Database and serve
as a single logical unit exposed to business users via the web
portal.

In the following diagram of a scale-out deployment, business
user report requests are distributed between two different
instances of the Power BI Report server via a network Load
Balancer:

Scale-out Power BI Report Servers

Servers can be added or removed from a scale-out deployment
via the Scale-out Deployment settings page of the Report Server
Configuration Manager application. This is what points each
server to the same Report Server Database. In addition, to
support for more users and greater usage, scale-out deployment
of the report server instances also increases the resiliency of the
deployment. To avoid a single point of failure, the scale-out
deployment of the report servers can be coupled with high
availability features for the Report Server Database, such as SQL
Server Always On availability groups or a failover cluster.
Additional information on configuring Always On availability
groups with a Report Server Database is available via the
following URL: http://bit.ly/2rLtSqY.

http://bit.ly/2rLtSqY

Summary
This chapter reviewed the Power BI Report Server as Microsoft's
modern, on-premises solution for enterprise and self-service BI.
The main features of the report server and licensing
requirements were described and contrasted with the Power BI
cloud service. Furthermore, the core processes of installing,
configuring, and administering the Power BI Report Server were
detailed.

The next chapter returns to the Power BI (cloud) service and
focuses on the distribution of published content to end users.
This includes the delivery and management of packages of
related Power BI content to large groups of users via Power BI
apps. Additionally, other content delivery capabilities of the
Power BI service are reviewed, including data-driven alerts and
scheduled email subscriptions.

Creating Power BI Apps and
Content Distribution
This chapter walks through all facets of Power BI apps as the
primary method for distributing content to groups of users.
Given the one-to-one relationship between apps and app
workspaces, readers should review Chapter 14, Managing
Application Workspaces and Content, prior to this chapter.

In addition to apps, other distribution and data access methods
are described, including email subscriptions, data alerts,
SharePoint Online embedding, and Analyze in Excel. Moreover,
guidance is provided on leveraging Microsoft Flow to create
custom email alert notifications. Distribution methods available
to the Power BI Report Server and the technical details of
integrating Power BI content into custom applications
are outside the scope of this chapter.

In this chapter, we will review the following topics:

Content distribution methods

Power BI apps

Sharing dashboards and reports

Data Alerts and notifications

SharePoint Online embedding

Report and dashboard subscriptions

Analyze in Excel

Custom application embedding

Content distribution methods
One the of the main value propositions of Power BI is the ability
for users to access relevant analytical content in a context that's
best suited to their needs. For example, many read-only users
may log into the Power BI service to view dashboards or reports
contained within Power BI apps specific to their role or
department. Other users, however, may only receive snapshot
images of reports and dashboards via Email Subscriptions or
respond to data alert notifications on their mobile device. In
other scenarios, certain users may analyze a dataset hosted in
Power BI from an Excel workbook while other users could
observe a Power BI report embedded within a team SharePoint
site.

Organizations can choose to distribute or expose their Power BI
content hosted in the Power BI service in one or a combination
of methods. The following table summarizes 11 methods of
content distribution and data access:

Content distribution methods in Power BI

The most common corporate BI distribution methods for
supporting large numbers of users are Power BI apps and
embedding Power BI content into custom applications, that is,
embed in custom applications. Several other methods, however,
are useful for small-scale and self-service scenarios, such as
Analyze in Excel as well as supplements to larger Power BI
solutions. Additionally, email subscriptions, data alerts, and
embedding options can serve to streamline the analysis process
and increase user productivity.

Organizational content packs are currently being replaced by Power BI
Apps and thus are excluded from the preceding table. The ability to
enable users to customize the content that has been distributed to them,
which is currently supported via organizational content packs, will soon
be supported by Power BI apps. Once Power BI apps deliver the same
(and additional) capabilities as organizational content packs, the ability
to create new organizational content packs will likely be removed from
the Power BI service.

The Power BI mobile application aligns with and supports

several of the primary distribution methods including Power BI
apps, the sharing of dashboards and reports, and data alerts.
Examples of the relationship between the Power BI service,
Power BI mobile and other Microsoft applications and services
are included in the following sections.

Power BI apps
A Power BI app is a published collection of content from an app
workspace. The app can include all or a subset of the
dashboards, reports, and any Excel workbooks within an app
workspace. Just as app workspaces are intended for the creation
and management of Power BI content, apps are intended for the
distribution of that content to groups of users. With security and
permission to view the app granted, users can view with the
dashboards and reports of the app within the Power BI web
service or via the Power BI mobile applications.

Microsoft has been clear that Power BI apps are the future of
content consumption within organizations and that they will
remain simple for users to access. The app workspaces used by
report authors and BI professionals to define and manage the
apps, however, will become more robust. Two examples of these
enhancements include display folders for grouping content
within an app as well as the automatic installation of published
apps for users.

Licensing apps
Apps are particularly well-suited to large, corporate BI
deployments that support the reporting and analysis needs of
many users. In most of these scenarios, the great majority of
users only need to view certain reports or dashboards and don't
require the ability to edit or create any content like Power BI Pro
users.

For example, a salesperson within the northwest region of the
United States may only briefly access a few dashboards or
reports 2 – 3 times per week and occasionally interact with this
content, such as via slicer visuals. With the Power BI Premium
capacity, these read-only users can be assigned Power BI Free
licenses yet still be allowed to access and view published apps.

In the absence of the Power BI Premium capacity, a Power BI
Pro license would be required for each user that needs to access
the app. In small-scale scenarios, such as when organizations are
just getting started with Power BI, purchasing Power BI Pro
licenses for all users can be more cost-efficient than Power BI
Premium capacities. However, at a certain volume of users, the
Power BI Premium capacity becomes a much more cost-efficient
licensing model. Additionally, Power BI Premium enables many
other features intended to support enterprise deployments. The
details of provisioning and managing Power BI Premium
capacity is described in Chapter 19, Scaling with Premium and
Analysis Services.

App deployment process
A Power BI app is published from an app workspace and inherits
the name of its source workspace. Likewise, an app can only
contain content from its source workspace. However, an app
does not have to expose all the content of its source workspace.
The members of the workspace responsible for publishing and
updating the app can utilize the Included in App toggle switch to
selectively exclude certain dashboards or reports. For example,
two new reports that have yet to be validated or tested could be
excluded from the app in its initial deployment. Following the
validation and testing, the Included in App property (on the far
right of each report and dashboard) can be enabled and the app
can be updated, thus allowing users to access the new reports.

The one-to-one relationship between workspaces and apps underscores
the importance of planning for the scope of an app workspace and
providing a user-friendly name aligned with this scope. Too narrow a
scope could lead to users needing to access many different apps for
relevant reports and dashboards. Alternatively, too broad a scope could
make it more difficult for users to find the reports and dashboards they
need within the app. Additionally, the workspace and app-update
process could become less manageable.

A simple publish (or update) process is available within the app
workspace for defining the users or security groups who can
access the app as well as adding a description and choosing a
default landing page for users of the app. The details of the
publish process are included in the Publishing apps section.

The following diagram and supporting five-step process describe
the essential architecture of apps and app workspaces:

Global Sales app deployment process

In this example, the Global Sales app is accessed by the sales
team consisting of 200 users, as per the Sample Power BI
Project template section in Chapter 7, Planning Power BI
Projects. Additionally, the row-level security roles described in Ch
apter 10, Developing DAX Measures and Security Roles, and the
organizational dashboard architecture reviewed in Chapter 13,
Designing Power BI Dashboards and Architectures, are utilized
by the app.

1. An app workspace is created in the Power BI service and
members are added with edit rights to the workspace.

1. Individual members (not security groups) can be
added to app workspaces.

2. Members of the app workspace publish reports to the
given workspace and create dashboards based on those
reports.

1. Power BI Desktop is used to author and publish
reports based on a Live connection to a Power BI

dataset.

2. Visuals from the published reports are pinned to
dashboards, such as European Sales.

1. Dashboards are not required to publish an
app.

3. Scheduled data refresh or dashboard cache refresh
schedules are configured and the workspace content is
validated.

1. As an import mode dataset, the dashboards and
reports are updated when the scheduled refresh is
completed.

4. A workspace administrator or a member with edit rights
publishes an app from the workspace.

The app is distributed to one or multiple Azure
Active Directory (AAD) security groups of
users.

5. Members of the sales team view and optionally interact
with the content in Power BI and Power BI mobile.

1. The dashboards and reports would reflect the
row-level security roles configured in the dataset.

Certain sales team users requiring Power BI Pro features, such as
Analyze in Excel, could utilize the Power BI app as well.
Additional content access methods exclusive to Power BI Pro
users, such as Email Subscriptions to dashboards and reports,
are described later in this chapter.

User permissions
BI teams distributing Power BI content via apps have two layers
of control for granting users permission to view the app's
dashboards and reports. The first layer is configured by choosing
the users or security groups of users when publishing the app in
the Power BI service.

In the following image, a security group from AAD (Global Sales
Team) is specified when publishing the Global Sales workspace as
an app:

Publish app to a security group

In this example, a Power BI user will need to be included in the
Global Sales Team security group to see and access the app. The user
who published the app will also automatically be granted
permission to the app. Additionally, as per the Install app

automatically checkmark, the published app will be
automatically installed for members of the Global Sales Team. These
users will be able to access the installed app in the Apps menu
between the Recent and Shared with me menu. An example of
the Apps menu is included in the Installing apps section later in
this chapter.

The Install app automatically option will only appear if this setting has
been enabled in the Power BI admin portal. Specifically, a Power BI
admin can enable the Push apps to end users setting in the Tenant
settings page for an entire organization or for specific security groups of
users. Microsoft recommends that apps should only be pushed to users
during off hours and that teams should verify the availability of the app
prior to communicating to a team that the published app is available.
The configuration of Tenant settings in the Power BI admin portal is
described in the following chapter.

The second layer of control is the row-level security (RLS)
roles configured for the dataset supporting the reports and
dashboards. If RLS has been defined within the dataset, all users
accessing the app will need to be mapped to one of the RLS roles
in the Power BI service.

In the following example, other Azure Active Directory security
groups (for example, BI Admin) are mapped to four RLS roles:

Dataset security role assignment

As per the preceding image, a BI Admin security group is mapped to
the Executives security role. Unlike the other three security roles,
which filter the Sales Territory Group column of the Sales Territory
table, the Executives role does not have any filters applied.

The user accessing and consuming the app will, therefore, need
to be a member of both the Global Sales Team security group and one
or more of the security groups assigned to an RLS role. If the
user is only a member of the Global Sales Team security group (from
the App Access page), the visuals of the dashboard and report
will not render.

Publishing apps
Apps are published from app workspaces in the following way:

1. A workspace member with edit rights clicks Publish in
the top-right corner of the app workspace.

1. Three pages are launched for configuring the app:
Details, Content, and Access.

2. On the Details page, a short description of the app is
entered, such as the following example:

Publish app

3. In addition to the description, a background color for the
app can be selected at the bottom of the Details page.

4. On the Content page, a specific App landing page is
selected, such as the Global Sales (dashboard) in the following
example:

App landing page

In this example, users accessing the Global Sales app will land on
the Global Sales (dashboard) by default. Alternatively, if None is
selected, a list view of the dashboards and reports of the app will
be exposed for the user to choose from. This setting is
appropriate when an app contains many different dashboards
and reports and diverse use cases. For example, if only a few
users view the Global Sales (dashboard), all other users will have
to open the list view themselves to navigate to their report or
dashboard.

The Content page also provides a consolidated view of the
dashboards, reports, and datasets that will be included in the
app given the current settings. In the event that any dashboard,
report, or workbook is included that shouldn't be, the user can
navigate to this item in the workspace and disable the Included

in App property.

By default, the Included in App property for new reports and
dashboards is enabled. Therefore, prior to publishing the app, ensure
that this property has been disabled for any internal testing or
development content.

5. On the Access page, the users or security groups who
should have permission to the app are defined:

1. If the user publishing the app has the right to
push apps to end users via the Push apps to end
users in Tenant settings in the Power BI admin
portal, the Install app automatically option will be
appearing as well.

2. Click the Finish icon in the top-right corner of the
Access page to publish the app.

3. An example of the Access page was included in the
preceding User permissions section.

A URL to the app will be provided in a window along with a
SUCCESSFULLY PUBLISHED message, as per the following
example:

Published app

The published app can now be accessed by the users or groups of
users defined on the Access page. If the Install app automatically
option was used, the user or team publishing the app can verify
with a few users that the app is indeed now installed and
available. Depending on the number of items (reports,
dashboards) included in the app, the automatic installation
could take some time. Once the automatic installation has been
confirmed, an email or other communication could then be sent
to advise users of the availability of the published app.

The following section describes the installation of an app if the
Install app automatically (Push apps to end users) feature was
not used.

Installing apps
When an app has been published and not pushed to end users
via the Install app automatically feature described in the
previous section, a one-time install per user is necessary. This
install can be completed by either sharing the URL for the app
with users or by instructing users to add the app in the Power BI
service.

In the following example, a user has logged into the Power BI
service and clicked Get apps from the Apps menu to observe the
Global Sales app:

Installing the Power BI app

The Apps menu can be found below the Recent menu and above
the Shared with me menu. By clicking Get it now, the app will be
added to the Apps menu of the user, as shown in the following
screenshot:

App installed

Users can hover over the app icon, such as GS in this example, to
either mark the app as a favorite or to remove the app. A new
feature expected in 2018 is the ability to automatically install
apps for users. For example, once the Global Sales app is
published, all users assigned to the Global Sales Team security group
would have the app.

A second option to install the app is to share the URL to the app
provided in the Power BI service. As per the Publishing apps
section, this URL is provided in a dialog when the app is first
published. Additionally, this URL can be obtained from the
Access page of the Apps menu, as per the following screenshot:

App URL

In the preceding example, a member of the Global Sales app
workspace has clicked Update app from the top-right corner of
the app workspace and navigated to the Access page. The App
URL, as well as other URLs specific to dashboards and reports
within the app, is located below the Permissions input box.

Apps on Power BI mobile
Just like the Apps menu item in the Power BI service, users can
access published Power BI apps from the main menu within the
Power BI mobile application. In the following image, a user has
accessed the Global Sales app on the Power BI mobile
application for iOS devices:

App on Power BI mobile

The user can easily swipe between dashboards and reports and
take advantage of all standard mobile features, such as the ability
to annotate and share both the annotations and the content with
colleagues. Additionally, any mobile optimizations configured by

the report authors for the reports and dashboards are also
reflected through apps.

App updates
One of the main advantages of Power BI apps is their isolation
from app workspaces. The members of the app workspace can
continue to develop, test, and modify content in the app
workspace while users only view the latest published app. This
single level of built-in staging could be a sufficient alternative for
some teams and projects relative to the multiple workspaces
(Dev, Test, Prod) involved in a staged deployment life cycle, as
described in Chapter 14, Managing Application Workspaces and
Content.

After an app has been published, the Publish app icon in the top-
right corner of the app workspace will be changed to an Update
app icon, as shown in the following screenshot:

Update app

In the preceding screenshot, the ellipsis (three dots) to the right
of the Update app icon has been selected from the context of the
administrator for the workspace administrator. In addition to
the options to edit and leave the workspace, an Unpublish App
option exists to immediately remove user access to the published
app. Workspace members (non-admins) can also unpublish the

app and execute app updates.

Clicking Update app launches the same three pages (Details,
Content, Access) described in the Publishing apps section. In the
most common update scenarios, such as adding a new report or
modifying a dashboard, it's unnecessary to change any of these
settings and the Update app icon can be clicked a second
time. However, these pages enable fundamental modifications to
be implemented, including the users or groups with permission
to access the app and the default landing page for the app.

Dataset-to-workspace
relationship
As described in the Workspace datasets section of Chapter
14, Managing Application Workspaces and Content, the Power
BI reports, based on Live connections to published Power BI
datasets, are currently tied to the app workspace of the dataset.
Therefore, in the absence of an Analysis Services database for
Live connection reports or a supported DirectQuery data source,
each app workspace and its corresponding app will require its
own import mode dataset. The ability to utilize a single source
Power BI dataset to support reports and dashboards across
multiple app workspaces (and thus apps) is expected in 2018.

Prior to the availability of this centralized dataset workspace, BI teams
can avoid duplicating datasets by deploying large, consolidated apps.
These apps would contain the reports and dashboards relevant to
multiple teams (for example, Sales, Finance), and the business users
could use the Favorites feature to quickly access the most relevant
content. Although not ideal, this would eliminate the need to manage
multiple data-refresh schedules and to keep multiple datasets
synchronized to the same business definitions.

Despite new features and capabilities that will increase the
scalability of Power BI datasets, particularly Power BI Premium
capacity, many organizations will choose either SQL Server
Analysis Services (SSAS) or Azure Analysis Services
(AAS) to support large-scale deployments.

For example, a BI project targeted at a particular business
process and team, such as shipping for the supply chain team,
may start out as a large Power BI dataset (.pbix). Once the Power
BI dataset has proven to be valuable and stable in terms of

business definitions and requirements, the dataset could be
migrated to an Analysis Services model. The differences between
Power BI datasets and Analysis Services models as well as
migration considerations are contained in Chapter 19, Scaling with
Premium and Analysis Services.

Self-Service BI workspace
As per the Power BI deployment modes section of Chapter
7, Planning Power BI Projects, some organizations may choose
to empower certain business users to create and manage the
visualization layer (Self-Service Visualization). This hybrid
approach gives business users more flexibility to address rapidly
changing analytical needs, yet leverages IT-supported and
validated data sources and resources. When even greater
business user flexibility is required, or when IT resources are not
available, the Self-Service BI mode can be implemented via
Power BI Pro licenses and an app workspace.

In the Self-Service BI deployment model, several business users
(for example, five to ten) who regularly collaborate within a team
or department are assigned Power BI Pro licenses. One of these
users then creates an app workspace in the Power BI service and
adds the other users who've been assigned Pro licenses as
members with edit rights. The BI/IT team would typically
require that at least one member of the BI organization be added
as a workspace administrator. Additionally, if applicable, the
BI/IT team would authorize a few business users in the
workspace to utilize an On-premises data gateway for their
required data sources.

Self-Service content
distribution
Given that each user has a Pro license, members of the Self-
Service BI Workspace (for example, Finance Team), a user has
the full flexibility to view content in the Power BI service or
mobile app as well utilize pro features, such as Analyze in Excel
and Email Subscriptions. The users could choose to publish an
app from the app workspace and advise workspace members to
only use the published app for any production scenarios, such as
printing reports or dashboards or referencing this content in
meetings. As a small team, the users could delegate
responsibilities for creating and testing the dataset(s), reports,
dashboards, and any Excel workbooks hosted in the workspace.

A typical example of Self-Service BI is with advanced power users within
finance and accounting functions. These users often have sophisticated
and rapidly changing analytical needs that can't easily be translated
into corporate BI-owned solutions. Additionally, the managers or
stakeholders of this team's work may not require accessing this content
themselves. For example, the analyst team could produce a monthly
financial close package (that is, PowerPoint deck) or a project analysis
and either present this content in person or distribute printed materials.

If it's determined that the business team requires additional
resources, such as support for greater scale or sharing their
content with users outside the workspace, the BI/IT team can
consider assigning the workspace to the Power BI Premium
capacity. Additionally, if the needs or the value of the workspace
grows, the project could be migrated from Self-Service BI to one
of the other deployment modes.

For example, the Power BI dataset created by the business team

could be migrated to an Analysis Services model maintained by
the BI team.

Risks to Self-Service BI
Perhaps no greater risk exists in business intelligence than the
potential to motivate or drive an incorrect decision. Several of
the chapters earlier in this book, particularly Chapter 7, Planning
Power BI Projects, through Chapter 10, Developing DAX Measures
and Security Roles, are dedicated to topics and practices that
aim to reduce that risk. Although business users and analysts are
often comfortable with the visualization layer, the quality and
sustainability of this content rest on the planning, testing, and
skills (for example, M queries, DAX measures) applied to the
source dataset. A severe risk, therefore, to Self-Service BI
projects is whether the business user(s) can build and maintain a
source dataset that provides consistent, accurate information.

Another significant risk is a loss of version control and change
management. The workspace users may not internally manage
changes to content and thus inadvertently misinterpret or share
content without the knowledge of changes implemented by other
users. For example, rather than only using the published app for
external communication and collaborating on any updates to the
app, the users could view and edit the content of the app
workspace itself thus eliminating all the staging of changes.

A final risk is that the self-service solution created may
ultimately need to be discarded rather than migrated. For
example, to quickly respond to new and changing analytical
needs, the source dataset and reports may include many
inefficient customizations and design patterns. These
customizations can render the solution difficult to support and
potentially consume unnecessary system resources. As more

users and reports become dependent on these designs or anti-
patterns, it can be more difficult and costly to migrate to a more
sustainable solution.

Sharing dashboards and reports
In addition to Power BI apps, Power BI Pro users can share
individual dashboards and reports directly to users, security
groups of users, and even guest users from outside the
organization. For example, unlike a Power BI app built for the
sales organization containing several dashboards and many
reports, a single dashboard or report could be shared with two or
three users in the customer service department. In this scenario,
the few customer service department users may have limited or
undefined reporting needs or the corporate BI team may not
have a full Power BI app for their department prepared yet.

Recipients of shared dashboards and reports receive the same
essential benefits of Power BI apps in terms of easy access as
well as the latest updates and modifications to the content. In
terms of user access, the Shared with Me menu is positioned
immediately following the Apps menu in both the Power BI
service and the Power BI mobile applications.

In the following screenshot, the user has accessed the main
menu of the Power BI mobile via the navigation icon (≡) at the
top left:

Power BI mobile main menu

Recipients of shared dashboards and reports can also add this
content to their list of Favorites just like Power BI apps.

The Power BI service gives content owners a properties pane to
define the recipients of the shared content and whether the
recipients will also be allowed to share the content. This pane
can be accessed via the Share icon at the top right of the given
report or dashboard when these items have been opened or from
the ACTIONS group of the app workspace.

The following image identifies the share icon for two dashboards
of the Corporate Sales app workspace:

Share Action in Power BI service

The same sharing icon from the preceding image is also exposed
in the ACTIONS workspace column for Power BI reports.

Excel workbooks published to the Power BI service cannot be shared
directly. To share a published Excel workbook (indirectly), a dashboard
can be shared containing a tile that was pinned from the Excel
workbook. The user receiving the shared dashboard can access the
workbook via the dashboard tile, just like accessing a Power BI report
based on a pinned report visual.

Once the sharing action has been selected, a sharing properties
page is launched to define the recipients who will receive access.
In the following example, the CUSTOMER SERVICE TRENDS
dashboard is being shared with Stacy Loeb and Brett Powell:

Share dashboard

As per the checkmark in the preceding image, the content owner
has the option to allow recipients of the share to also share the
dashboard themselves. This feature, referred to as resharing,
expires one month after the share, if enabled originally.

Sharing dashboards and reports should only be generated from app
workspaces and not from a user's private My Workspace. The app
workspace allows the workspace members to manage both the content
and its distribution, and thus eliminates a dependency on a single user.

Members with edit rights to the app workspace containing the
shared dashboard or report can manage user access following
the sharing of the content. For example, several days after the
CUSTOMER SERVICE TRENDS dashboard was shared, it may
be necessary to add or remove users from the
share. Additionally, the ability of recipients to reshare the
content can be revoked if this was enabled originally.

In the following image, a member of the Customer Service app
workspace has again selected the Share action for the
CUSTOMER SERVICE TRENDS dashboard but has now
navigated to the Access pane:

Manage shared access

By clicking the ellipsis next to each individual user, the app

workspace member (with edit rights) has the option to remove
the user's access altogether or to toggle the user's access between
Read only and Read and reshare.

Sharing scopes
When a dashboard is shared, the reports containing the visuals
pinned to that dashboard are shared as well. The recipient of the
shared dashboard can, therefore, access and interact with the
underlying reports by clicking the linked dashboard tile(s). The
ability to share a report directly eliminates the need for the
owners of a report to create a dashboard and for the recipients to
leverage this dashboard when they only need to access the
report. However, recipients of a shared dashboard can still add
one or more of the underlying reports as favorites, thus
providing the same ease of access as a shared report.

Although a single report may be all that's needed currently,
sharing a dashboard provides greater scalability. For example, a
shared dashboard may begin with only one report but visuals
from two or three new reports could be pinned to the dashboard,
thus granting access to these additional reports. This would
negate the need to share each new report individually, and the
dashboard could help summarize the reports for the user. When
a report is shared, the only option for adding content is to add
report pages to the existing report, and this can reduce the
usability of the report.

Sharing versus Power BI apps
Just like Power BI apps, either Power BI Pro licenses or Power
BI Premium capacity can be used to enable user access. In the
example from this section, both Stacy Loeb and Brett Powell could be
assigned Power BI Pro licenses to allow both users to view the
shared content. Alternatively, the app workspace (Customer
Service) of the shared content could be assigned to a Power BI
Premium capacity, thus allowing Power BI Free users to access
the content. The same licensing considerations for external guest
users described in the Power BI apps section applies to sharing
dashboards and reports.

Also, like Power BI apps, the recipients of the shared dashboard
or report will need to be mapped to an RLS role if RLS has been
configured on the source dataset. The users attempting to access
the shared content will receive an error message if this mapping
is not implemented within the security settings of the dataset, as
described in the User permissions section earlier in this chapter.

Ultimately, Power BI apps provide the best long-term solution
for content distribution, particularly for groups of users. Unlike
sharing dashboards and reports, any number of new dashboards
and reports can be added to Power BI apps as needs grow and
change. Additionally, as described earlier in this chapter, owners
of the app workspace can stage and test content prior to
republishing the app via the app update process. In the case of
shared dashboards and reports, any revision to the shared
content is immediately visible to the user(s).

SharePoint Online embedding
Many organizations use team sites in SharePoint Online to
facilitate collaboration between colleagues. These sites often
contain important team or departmental documents (that is,
Word, PowerPoint), calendars, and relevant links. Via the Power
BI report web part for SharePoint Online, a Power BI report can
be embedded into a SharePoint Online page to further enrich
these sites.

Yana Berkovich, Microsoft Data Platform MVP and collaboration
consultant, has co-authored this section.

Technically, the SharePoint Online embedding process consists
of two steps within the Power BI service and two steps within
SharePoint Online. However, the following 12 step process can
be used to effectively plan and implement the embedding:

1. Identify the business users of the team site who will need
to view the embedded Power BI report.

2. Identify the app workspace and the report within that
workspace that will be embedded in the team site.

3. Determine which of the following two options will be
used to authorize the SharePoint Online site users:

1. Assign Power BI Pro licenses to each user and add
these users as members of the app workspace.

2. Assign the app workspace to the Power BI
Premium capacity such that Power BI Free users

can view the content.

4. Open the report in the Power BI service and select Embed
in SharePoint Online from the File menu dropdown:

1. The embed URL is provided via a dialog, per the
following screenshot:

Embed link to Power BI report

5. In a modern SharePoint Online page, click the add (+)
icon and select the Power BI web part, as shown in the
following screenshot:

Add Power BI report web part

6. The add (+) icon to add a web part is provided by default
for new site pages. For existing site pages, clicking the
Edit icon in the top right will provide the same add (+)
icon.

If the page's version hasn't already been set to modern, contact the
SharePoint or Office 365 administrator as this is required to use the
Power BI web part.

7. Select the Add report command button to access the web
part property pane for configuring the embedded report.

1. This will launch the web part property pane on
the right, including an input box for the Power BI
Report URL.

8. Paste the Power BI report URL into the Power BI report
link input box.

1. Use the Page name dropdown to select the default
page that is shown on the report page.

9. Configure the web part via the Display (for example,
16:9), Show Navigation Pane, and Show Filter Pane
properties.

1. The Show Navigation Pane should be enabled if
users require access to multiple pages of the
report.

10. In the following screenshot, a Power BI report with two
report pages (General, Agents) has been embedded into a
SharePoint Online site page:

Power BI report embedded in SharePoint Online site page

11. Once embedded in the site page, the web part will reflect
data refreshes and any report modifications implemented
in Power BI.

12. Click the Publish button on the top-right of the site page
to make the embedded report visible to site users.

1. When finished on the site page, click Save and
Close on the left side of the page.

"Share Power BI reports where team collaboration is done to provide users with
greater context and to drive overall productivity."

 – Yana Berkovich, Microsoft Data Platform MVP

As described in Chapter 14, Managing Application Workspaces
and Content, security groups are not supported for adding
members to app workspaces. Therefore, if large numbers of
users require access to Power BI reports via SharePoint Online,
assigning the workspace(s) to the Power BI Premium capacity
can both simplify management and reduce the cost of individual
Power BI Pro licenses.

Custom application embedding
In addition to SharePoint Online embedding, the Power BI API
can be leveraged to embed reports, dashboards, and individual
dashboard tiles into any custom application. With the Power BI
Premium capacity provisioned, content developed in the Power
BI service can be embedded in new or existing applications for
an organization so that Power BI Free users are able to view this
content. Depending on the Power BI Premium SKU purchased,
an organization can exclusively embed Power BI content in their
application(s) or use embedding along with the Power BI service
portal for content consumption.

Two kinds of Power BI Premium SKUs are available in the Office
365 portal that support embedding: P SKUs and EM SKUs. The
EM SKUs are exclusive to custom applications and other
software as a service (SaaS) offerings, such as SharePoint
Online and teams. Power BI Free users are able to view
embedded Power BI content in these applications but cannot
view content in the Power BI service (PowerBI.com). Power BI
Premium P SKUs, however, support both embedding content in
custom applications as well as user access in the Power BI
service, such as via Power BI apps. For example, an organization
could use the same P3 SKU to support four Power BI apps and
the embedding of content in a custom application.

The third type of SKU that supports embedding Power BI content in
custom applications is the A SKU. These SKUs are also referred to as
Power BI Embedded and are exclusively available in the Microsoft Azure
portal. A SKUs, or Power BI Embedded, are targeted at independent
software vendors (ISVs) who will provide users from external
organizations with access to the embedded content. As an Azure
resource, the software vendor can utilize familiar development and
operations processes, including the ability to scale up, down, and pause

https://powerbi.microsoft.com/en-us/

or resume the provisioned resources as workloads change.

Monthly billing and both monthly and yearly commitment
options are available for Power BI Premium EM and P SKUs.
Given their more limited scope, EM SKUs are significantly less
expensive than P SKUs. In the following screenshot from the
Office 365 admin center, the Power BI Premium EM SKU is
available for purchase:

Power BI Premium – EM3

As shown in the preceding screenshot, the EM3 SKU provides
four virtual cores and is available via month-to-month
commitments. Currently, the EM3 SKU is the largest of the EM
Premium SKUs in terms of virtual cores and memory but is the
only EM SKU available in the Office 365 admin center. The EM1
and EM2 SKUs, which have fewer resources and thus lower
prices, must be purchased through Microsoft volume licensing.
For example, the EM1 SKU currently includes one virtual core, 3

GB of RAM, and is priced at $625 per month.

Publish to web
If enabled by the Power BI administrator, reports in the Power
BI service can also be embedded on any website and shared via
URL on the public internet. The Publish to web feature provides
an embed code for the Power BI report, including iFrame HTML
and a report URL. Organizations can utilize Publish to web to
expose non-confidential or publicly available information on
their public-facing corporate website.

In the following screenshot, a Publish to web embed code has
been obtained in the Power BI service:

Publish to web embed code

The Publish to web feature is accessed via the File menu
dropdown for a report, just like the SharePoint Online
embedding URL from the previous section. However, unlike the

SharePoint Online embedding feature, the Power BI service
stores the Publish to web embed codes so that both
administrators and users with edit rights to the reports can
access and manage these codes.

For example, a member of an app workspace with edit rights can
use the settings menu (Gear icon) to access a Manage embed
codes page. This page allows the user to retrieve or delete any
embed codes for the given app workspace.

With the exception of custom visuals built with the R language, custom
visuals are supported in Publish-to-web reports. This is the same
limitation currently in place with the Power BI Report Server as
described in Chapter 16, Deploying the Power BI Report Server. Reports
based on datasets with row-level security roles configured and reports
that use on-premises Analysis Services Tabular models are not
supported.

Given the obvious potential risk of users accidentally sharing
confidential or protected information over the public internet,
Power BI administrators have granular controls over this feature
including the ability to disable it for the entire organization.
Details of these administrative settings are included in Chapter 18,
Administering Power BI for an Organization.

Power BI reports accessed via embed codes will reflect the latest
data refresh of the source dataset within approximately one hour
of its completion. Additional documentation on Publish to web,
including tips for fitting the iFrame into websites, is available at h
ttp://bit.ly/2s2aJkL.

http://bit.ly/2s2aJkL

Data alerts
Data-driven alerts are one of the top capabilities exclusive to
dashboards in the Power BI service. For many users and
business scenarios, data-driven alerts are a high-value
complement, or even a substitute, to dashboards and reports as
they help to avoid frequently accessing Power BI to search for
actionable information. For example, rather than opening Power
BI in the browser or on a phone every morning and looking for
red colors or certain KPI symbols, the user could view certain
dashboards or reports only once a week and otherwise only
respond to data-driven alert notifications sent via email.

With a standard card, KPI, or gauge visual pinned to a
dashboard, a data-driven alert can be configured either in the
Power BI service or via the Power BI mobile app. In the following
screenshot, a separate data alert has been configured for the
gauge, the KPI, and the card visual reflecting the current day's
average call length, staff versus target, and service calls,
respectively:

Manage alerts in Power BI service

The manage alerts option (bell icon), accessed by clicking the
ellipsis in the top right corner of the tile, is only available for the
standard gauge, KPI, and card visuals. In the following
screenshot, an alert rule is set for the Today's Call Length
measure, represented by the gauge visual:

Setting an alert rule

In this screenshot, the target value from the gauge (10) is set as
the threshold value of the alert rule by default. However, per the
alert rule dialog in the preceding image, Alert title, the Threshold
value, the Condition (Above or Below), the Maximum
notification frequency, and the email notification can all be
configured per alert rule. Only the Set alerts rule for input box is
not configurable as this is based on the measure within the tile,

in this case the Today's Call Length measure.

Each alert rule is limited to a single condition and thus additional alert
rules can be configured for the same dashboard tile to provide
notifications for multiple conditions. For example, a separate alert rule
could be configured for the gauge tile with a condition of Below 3. When
the underlying dataset of the dashboard tile is refreshed, a value for the
Today's Length Measure of Above 10 or Below 3 would trigger an alert
notification.

Data alerts and notifications are deeply integrated with the
Power BI mobile applications. In the following screenshot from
an iPhone, data alert notifications associated with each tile (3)
are promoted to the Power BI mobile app icon:

Data alert notification on iPhone

Additionally, as shown in the preceding screenshot, the
notification associated with each alert rule is presented on the
home screen including ALERT TITLE, VALUE, CONDITION,
and THRESHOLD. Clicking on the Power BI mobile app icon
provides access to the notifications pane that, like the Power BI
Service, includes a link to the specific tile for further analysis.
Between the mobile alert notifications, the notifications within
the Power BI service, and the optional email delivery of the
notification, users are able to respond quickly as significant data
changes occur.

Microsoft Flow integration
Currently, the alert notification emails from Power BI are limited
to the user who configured the data alert. In many scenarios,
however, several users or a group email account should receive
the notification email and it's not practical for each user to
individually configure the data alerts.

Microsoft Flow provides a powerful but easy-to-use alternative
to the standard Power BI alert email. For example, without any
custom data connections or code, it enables a single user to fully
define one or multiple email recipients of an alert notification
and to customize the content of this message.

Microsoft Flow is an online service that enables the automation
of workflows between applications and services. Since each MS
flow is fundamentally composed of a trigger (starting action) and
one or more corresponding actions, a top use case for MS Flow is
to send custom email messages based on various trigger events.
For example, when a sales lead is added in Salesforce, an email
could be automatically sent to a sales team member via MS Flow.

Several pre-built MS Flow templates are available that leverage
the Power BI data alert as a trigger. These templates make it easy
to get started and to customize details, such as email addresses
and the data from the alert to include. In the following MS Flow,
the Today's Average Call Length alert described in the Data
alerts section is used as the trigger of a customized email via an
Office 365 for Outlook account:

Power BI alert email via MS Flow

Power BI icons associated with the data alert trigger are available
when populating the send email action via the Outlook for Office
365 connector. In the preceding screenshot, text labels with a
closing colon are positioned in front of the icons to make the
alert email messages easy to understand. The following sample
email message reflects the preceding MS Flow configuration:

Power BI alert email message via MS Flow

MS Flow provides a rich platform for building both simple and
complex workflows to obtain greater value from Power BI assets.
Other common MS Flow and Power BI integrations, beyond
custom email notifications, include posting messages to a Slack
channel and triggering an alert in Microsoft Teams based on an
alert in Power BI.

Email Subscriptions
Power BI also provides Email Subscriptions for Power BI Pro
users of both reports and dashboards. With Email Subscriptions
configured in the Power BI service, a user is sent a snapshot of
either the report page or the dashboard canvas as well as a link
to the content in the Power BI service. In the following service.
In the following screenshot, a user with a Power BI Pro license
has accessed the Global Sales (dashboard) described earlier in
this chapter from within a Power BI app:

Subscribe to dashboard

Clicking the subscribe icon shown in the preceding image opens
the following dialog to confirm the email subscription:

Dashboard Email Subscription

With the yellow slider set to On, selecting Save and close at the
bottom of the dialog enables the email subscription to the
dashboard. An email containing an image of the current state of
the dashboard and a link to the dashboard in Power BI will then
be sent when any of the underlying datasets change. If the source
datasets refresh more than once per day, only the first email
snapshot of the refresh will be sent.

A very similar subscription icon and dialog is also available for Power BI
reports. The only significant difference with report subscriptions is that
each subscription is associated with a single page. Therefore, the Power
BI Pro user must choose the page for each subscription and configure
multiple subscriptions to the same report if multiple pages of the report
need to be emailed.

At this time, similar to data alerts, Email Subscriptions are only
associated with the user who creates the subscriptions. However,
the Power BI team has advised that they intend to enhance
Email Subscriptions to include subscribing others to emails,
such as security groups of users. Additionally, Email
Subscriptions are currently sent with the report's default filter
and slicer states. Per the Power BI team, this limitation is also

expected to be addressed by allowing subscriptions to reports
with specific slicer and filter states set.

Finally, emails are only sent to the User Principal Name
(UPN) used to log into the Power BI service. For example, if
the Mark Langford user doesn't receive email at his Power BI account
(Mlangford@AdWorks.onmicrosoft.com), he will not receive Email
Subscriptions. The Power BI documentation advises that the
Power BI team is working to relax this limitation as well.

Email Subscriptions do not support most custom visuals. However,
certified custom visuals, such as the Power KPI visual used in the Global
Sales (dashboard), are supported. Additional details on certified custom
visuals can be found in the Custom visuals section of Chapter 16, Deploying
the Power BI Report Server.

Analyze in Excel
Users with Power BI Pro licenses can connect to datasets hosted
in the Power BI service from both Power BI Desktop and
Microsoft Excel. Either of these tools will display the fields list of
tables and measures for the dataset and, based on the report
visuals created (for example, pivot tables), send queries to Power
BI for execution by the source dataset. In the case of Power BI
Desktop, these reports can be published back to the Power BI
service and will retain their connection to the dataset, as
recommended in the Live connections to Power BI datasets
section of Chapter 11, Creating and Formatting Power BI Reports.

Excel reports based on these connections, however, currently do
not retain their connection and thus cannot be refreshed or
interacted with in the Power BI service. Despite this limitation,
and the many additional analytical and visualization features of
Power BI Desktop, Excel remains a very popular tool given its
inherent flexibility and its mature, familiar features. Power BI's
deep support for Excel, including both Analyze in Excel and the
Power BI publisher for Excel, is an advantage over other BI
platforms.

Additionally, the limitation of external data connections from
Excel in the Power BI service is expected to be removed in 2018.
The Power BI Report Server, for example, already supports Excel
workbooks with Live connections as described in the Office
Online Server for Excel workbooks section in Chapter 16,
Deploying the Power BI Report Server.

Prior to broadly recommending Excel as a client-reporting tool, consider
whether Power BI Desktop isn't better suited to common use cases, such

as pivot tables. Many new features were added to Power BI Desktop in
2017 that targeted Excel pivot table scenarios, such as showing multiple
metrics on rows, granular formatting, layout controls, and displaying
values as a percentage of the total. Additionally, as the adoption of
Power BI increases, Power BI reports built in Power BI Desktop provide
a richer and more familiar user experience.

The Analyze in Excel feature is exposed as an action for Power BI
reports via an Excel workbook icon in the Power BI service. The
action is accessible in both app workspaces and in published
apps for Power BI Pro users. In the following example from an
app workspace, the option to analyze the Monthly Sales Summary report
in Excel is available on the right:

Analyze in Excel icon

Clicking the Analyze in Excel icon provides a Microsoft Office
Data Connection (ODC) file that can be saved to the local
machine. By default, opening this file launches Excel with a
connection to the source dataset of the Power BI report. For
example, even though the Monthly Sales Summary may only utilize a
few measures and columns of the dataset, the entire fields list of
the dataset will be exposed with a pivot table connection in
Excel, as shown in the following screenshot:

Excel connection to the Power BI dataset

Similar to the fields list in Power BI Desktop, Excel positions
tables with only measures visible at the top of the list preceding
the dimension tables. Just like standard Excel pivot tables, users
can drag measures and columns to the field wells to structure
each pivot table report. Right-clicking a column name, such as
Employee department, presents the option to add the column as a
slicer.

Just like interacting with a Power BI report, any RLS roles
applied on the source dataset will be enforced on the user's
report queries generated from Excel. The Excel workbook and
any reports created based on the connection can be saved and
shared like other Excel workbooks. However, for other users to
refresh and query the source dataset from Excel, they will need
access to the app or app workspace, a Power BI Pro license, and

will need to be mapped to a security role if RLS has been
configured.

Power BI Publisher for Excel
In addition to the Analyze in Excel feature from the Power BI
service, even deeper integration with Excel is possible via the
Power BI publisher for Excel add-in. This add-in can be
downloaded from the Power BI service via the same drop-down
menu used for the On-premises data gateway, as illustrated in
the Configuration of on-premises gateway section of Chapter
15, Managing the On-Premises Data Gateway. Once
downloaded and installed, a Power BI tab will be visible on the
Excel ribbon:

Power BI Publisher for Excel

Via the Connect to Data button, users can access the reports and
datasets of the app workspaces they have permissions to. For
example, rather than navigating to the specific Power BI report
of interest in the Power BI service to access the Analyze in Excel
feature, the user could simply select the workspace and a report
or dataset from a dropdown in Excel.

In the following screenshot, the user has clicked the Connect to
Data button and navigated to the World Tour - New York app
workspace:

Connect to Data

The same Power BI workspaces and datasets accessible from
Power BI Desktop can be accessed via the Connect to Data
feature. Additionally, the Power BI publisher for Excel enables
users to pin items, such as ranges of cells or charts, to
dashboards in the Power BI service and to manage updates to
these local items. Additional information on the Power BI
publisher for Excel is available here: http://bit.ly/2nuzQIt.

http://bit.ly/2nuzQIt

Summary
This chapter provided a broad overview of Power BI's different
content distribution and data access methods. Power BI apps
were particularly emphasized as they represent the primary
distribution mechanism supporting large groups of users going
forward. The essential details of utilizing other distribution
methods, such as email Subscriptions, data alerts, and sharing
reports and dashboards were also reviewed. Furthermore,
guidance was provided on analyzing the impact or usage of a
published app as well as utilizing Microsoft Flow to drive custom
email alerts.

The following chapter looks at Power BI deployments from an
administration perspective. This includes the Power BI service
administrator role and the controls available for administrators
to define and manage authentication, monitor user activities,
and limit or disable various features.

Administering Power BI for an
Organization
The management and administrative processes described in
previous chapters have primarily reflected the role of corporate
business intelligence teams and BI professionals. In this chapter,
the features and processes relevant to IT administrators are
reviewed, to help organizations deploy and manage Power BI
according to their policies and preferences. This includes data
governance in the context of both self-service BI and corporate
BI, the Power BI admin portal, monitoring user activity and
adoption, and the administration of Power BI Premium capacity.

As in the previous chapter, this chapter exclusively covers the
Power BI service. Administrative topics relevant to the on-
premises deployments that were included in Chapter 16, Deploying
the Power BI Report Server. Additionally, although data
governance concepts and implementation guidance are included,
readers are encouraged to review Microsoft documentation for
further details on implementing data governance as part of
Power BI deployments.

In this chapter, we will review the following topics:

Data governance for Power BI

Azure Active Directory conditional access policies

Azure Active Directory B2B collaboration

Power BI admin portal

Power BI service Tenant settings

Power BI activities in Audit Logs

Using metrics reports

Administering Power BI Premium capacities

Data governance for Power BI
Data governance is defined as a set of policies to secure an
organization's data, ensure consistent and accurate decision
making, and to manage access to data. Data governance is
applicable to business intelligence generally, but organizations
investing in Power BI for the long term should consider their
data governance strategy and policies in the context of Power BI.
A central component of data governance relates to the three
deployment modes described at the beginning of Chapter
7, Planning Power BI Projects, and seeks to address the
following question: "How can we ensure our data is secure and
accurate while still providing the business with the access and
flexibility it needs?"

It's generally understood that some level of self-service BI
(SSBI) is appropriate and beneficial to empower business users
to explore and discover insights into data. Tools, such as Power
BI Desktop, and features in the Power BI web service, such as
apps, make it easier than ever for business users to
independently analyze data and potentially create and distribute
content. However, experience with SSBI projects has also
strongly suggested that IT-owned and managed administrative
controls, enterprise-grade BI tools, and data assets, such as data
warehouses, are still very much necessary. In response to the
strengths and weaknesses of traditional IT-led BI and business-
led SSBI, Microsoft has suggested and internally implemented a
managed self-service approach to data governance.

From a BI architecture standpoint, managed self-service BI
aligns represents a hybrid approach of both the Corporate BI and

the Self-Service Visualization modes introduced in Chapter
7, Planning Power BI Projects. As shown in the following
diagram, certain projects are carried out by the BI/IT
department, while business users have the flexibility to analyze
data and create their own reporting:

Multi-mode Power BI deployments

The three capabilities of Corporate BI Projects identified in
the preceding screenshot address the limitations or weaknesses
of self-service BI projects and tools. These limitations include
data accuracy, scalability, complex data integration processes,
and custom distributions of reports to groups of users. Certain
projects requiring these skills and tools such as the integration of
multiple source systems and the scheduled distribution of user-
specific reports could be exclusively developed and managed by
IT. Additionally, the business stakeholders for certain projects
may prefer or insist that certain projects are wholly owned by IT.
From an on-premises perspective, one example of this would
include an extract-transform-load (ETL) package developed
in SQL Server Integration Service (SSIS), an SQL Server
Analysis Services (SSAS) data model, and a combination of
paginated and Power BI reports developed for the Power BI
Report Server.

Some of the limitations, such as scalability and custom distributions of
reports, may be mitigated in the near future by further enhancements to
Power BI Premium and new features in the Power BI service. However,
despite these new capabilities, certain projects and processes critical to a
BI deployment are likely best suited for IT/BI professionals.

However, as shown in the Business User SSBI mode of the
Multi-mode Power BI deployments diagram, business users are
still empowered to leverage SSBI tools, such as Power BI
Desktop, to conduct their own analysis and to internally
determine requirements within their business unit. Most
commonly, business users can leverage an IT-owned asset, such
as an Analysis Services model, thus avoiding the data
preparation and modeling components while retaining flexibility
on the visualization layer. This Self-Service Visualization model
is very popular and particularly effective when combined with
Excel report connections.

Note that continuous monitoring and data governance policies
are in effect across the organization regardless of Corporate BI or
Business User SSBI. This is very important to detect any
anomalies in user activity and as a first step in migrating a
business developed solution to a corporate BI solution. For
example, monitoring of the Office 365 Audit Log data for Power
BI may indicate high and growing adoption of particular reports
and dashboards based on a particular Power BI dataset. Given
this query workload, or possibly other future needs for the
dataset, such as advanced DAX measures, it may be appropriate
to migrate this dataset to an Analysis Services model maintained
by IT. An example of this migration process to an Azure Analysis
Services model is included in Chapter 19, Scaling with Premium
and Analysis Services.

Implementing data governance
With an overarching strategy in place for deploying Power BI, as
shown in the previous section, concrete tasks can be defined for
implementing data governance. Several of these tasks include
the following:

1. Identify all data sources and tag sources containing
sensitive data:

1. Additional access and oversight policies should be
applied to data sources containing sensitive or
protected data.

2. The classifications assigned to dashboards
(Confidential, Organizational) in the Dashboard
data classifications section of Chapter 14, Managing
Application Workspaces and Content, is an
example of data tagging.

2. Determine where critical data sources will be stored:

1. For example, determine whether the data
warehouse will be hosted on-premises or in the
cloud.

2. Power BI reporting can be deployed fully on-

premises via the Power BI Report Server, fully in
the cloud, or organizations can pursue hybrid
deployment models. Examples of these
deployment options are described in the Hybrid
deployment models section of Chapter 16, Deploying
the Power BI Report Server

3. Additionally, determine whether analytical
(OLAP) BI tools such as Analysis Services and
SAP BW will be used with these data sources and
whether those tools will be stored on-premises or
in the cloud.

3. Define who can access which data and how this access
can be implemented:

1. Defining and managing security groups in Azure
Active Directory (AAD) or Active Directory
(AD) is strongly recommended.

2. Determine whether data security roles will be
implemented in a data warehouse source such as
Teradata or if row-level security roles will be
implemented in analytical models such as
Analysis Services.

4. Develop or obtain monitoring solutions to continuously
monitor activities:

1. Visibility to the Office 365 Audit log data, as
described later in this chapter, is an essential
piece of this task.

2. Any high-risk or undesired activities should be
automatically detected, enabling swift action.

5. Train business users on data governance and security:

1. This is particularly relevant for any dataset
designers within business units who will leverage
Power BI Desktop and to access shape, and model
data.

The extent of data governance policies is driven by the size of the
organization, its industry and associated regulations, and the
desired data culture. For example, a large healthcare provider
that wishes to pursue a more conservative data culture will
implement many data governance policies to eliminate security
risks and promote data quality and accuracy. However, a small
to mid-sized company in a less regulated industry, and perhaps
with less IT resources available, will likely implement less dense
governance policies to promote flexibility.

For example, with Power BI Desktop and Power BI Premium
capacity, a large analysis model containing complex M queries
and DAX expressions could potentially be created and supported
by a business user or team. However, the dataset designer of this
model will need to be familiar with both the governance policy
determining the level of visibility users of the dataset will have,
as well as how to implement the corresponding row-level
security roles. Additionally, business users with Power BI Pro

licenses responsible for distributing content such as via Power BI
apps will need to know the security groups that should have
access to the app.

Azure Active Directory
As with other Microsoft Azure services, Power BI relies on Azure
AD to authenticate and authorize users. Therefore, even if Power
BI is the only service being utilized, organization's can leverage
Azure AD's rich set of identity management and governance
features, such as conditional access policies, multi-factor
authentication (MFA) and business-to-business
collaboration. For example, a conditional access policy can be
defined within the Azure Portal which blocks access to Power BI
based on the user's network location, or which requires MFA
given the location and the security group of the user.
Additionally, organizations can invite external users as guest
users within their Azure AD tenant to allow for seamless
distribution of Power BI content to external parties, such as
suppliers or customers.

Guidance on configuring Azure AD security groups to support
row-level security (RLS) is included in Chapter 10, Developing
DAX Measures and Security Roles. This section reviews other
top features of Azure AD in the content of Power BI
deployments.

Azure AD B2B collaboration
Azure AD business-to-business (B2B) collaboration enables
organizations using the Azure AD to work securely with users
from any organization. Invitations can be sent to external users,
whether the user's organization uses Azure AD or not, and once
accepted the guest user can leverage their own credentials to
access resources, such as dashboards and reports contained in a
Power BI app. Just like users within the organization, guest users
can be added to security groups and these groups can be
referenced in the Power BI service.

Prior to the existence of Azure AD B2B, it was necessary to create
identities within Azure AD for external guest users, or even develop an
application with custom authentication.

A guest user can be added to Azure AD by sending an invitation
from Azure AD and by sharing content with the external user
from the Power BI service. The first method, referred to as the
planned invite method, involves adding a guest user from within
Azure AD and sending an invitation to the user's email address.
In the following screenshot from the Azure portal, Azure Active
Directory has been selected and the All users page has been
accessed from the Manage users and groups tab:

Add guest user in Azure AD

As shown in the preceding screenshot, the administrator can
click New guest user to add the user, and enter an invitation
message, such as in the following screenshot:

Invite a guest user to Azure AD

The guest or external user will be sent an invitation via email
containing the personal message, as well as a Get Started button.
The user will need to click Get Started and accept the invitation.
Once accepted, the guest user can be managed and added to
security groups for use in Power BI. In the following screenshot
from the All users tab in Azure AD, the guest user
(Brett.Powell@....) has accepted the guest user invite:

Guest User in Azure AD

Guest users are identified in Azure AD with a globe icon and with
a Guest value in the USER TYPE property, as shown in the
preceding screenshot.

As an alternative to the planned invite method via Azure AD
described before, an invite to an external user can also be
generated from the Power BI service directly. In this method,
commonly referred to as ad hoc invites, a guest user's email
address is specified when publishing or updating a Power BI app
(via the Access page) or when sharing a Power BI dashboard or
report. The external user would then receive an email invite to
the specific content. Upon accepting this invite, the external user
would be added as a guest user in Azure AD. Details on
distributing content to users via apps and other methods are
included in Chapter 17, Creating Power BI Apps and Content
Distribution.

Organizations have the option to completely block sharing with

external users via the Share content with external users setting
in the Power BI admin portal. As shown in the following
screenshot, this setting can be enabled or disabled for an entire
organization, or limited to certain security groups:

Share content with external users setting in Power BI admin portal

In addition to the Power BI admin portal, additional
management options over external guest users are available in
Azure AD. These settings, including whether members in the
organization (non-admins) can invite guest users, are available
on the manage user settings page of Azure AD.

External B2B users are limited to consuming content that has
been shared or distributed to them. For example, they can view
apps, export data (if allowed by the organization) and create
email subscriptions, but they cannot access app workspaces or
create and publish their own content. Additionally, external
users cannot currently access shared content via the Power BI
mobile apps.

Licensing external users
In addition to authentication to the Power BI content, either a
Power BI Pro license or Power Premium capacity is needed to
allow the guest user to view the content. The following three
licensing scenarios are supported:

1. The app workspace of the Power BI app can be assigned
to Power BI Premium capacity:

1. Only Power BI Premium P SKUs support sharing
with external users

2. Differences between P and EM SKUs were
included in the Custom application embedding
section in Chapter 17, Creating Power BI Apps and
Content Distribution

2. The guest user can be assigned a Power BI Pro license by
the guest user's organization

3. A Power BI Pro license can be assigned to the guest user
by the sharing organization:

1. The Power BI Pro license only allows the user to
access content within the sharing organization

In the following screenshot from Azure AD, a guest user
(Brett.Powell) is assigned a Power BI Pro license:

Power BI Pro license assignment in Azure AD

The License assignment for the guest user, as shown in the
preceding screenshot, can be accessed via the Manage Licenses
page for the given user in Azure AD. From this page, select the
Assign icon (+) and then the Products tab to complete the
assignment.

Conditional access policies
Administrators of Azure AD can configure conditional access
policies to restrict user access to Power BI based on the user or
security group, the IP address of the user sign-in attempt, the
device platform of the user, and other factors. A very common
scenario supported by conditional access policies is to either
block access to Power BI from outside the corporate network or
to require multi-factor authentication (MFA) for these
external sign-in attempts. As a robust, enterprise-grade feature,
organizations can use conditional access policies in conjunction
with security groups to implement specific data governance
policies.

Each Azure AD conditional access policy is composed of one or
more conditions and one or more controls. The conditions define
the context of the sign-in attempt such as the security group of
the user and the user's IP address, while the controls determine
the action to take given the context. For example, a policy could
be configured for the entire organization and all non-trusted IP
addresses (the conditions) that requires MFA to access Power BI
(the control). The Azure portal provides a simple user interface
for configuring the conditions and controls of each conditional
access policy.

The following steps and supporting screenshots describe the
creation of an Azure AD conditional access policy which requires
MFA for users from the sales team accessing Power BI from
outside the corporate network:

1. Log in to the Azure portal and select Azure Active

Directory from the main menu
2. From the SECURITY group of menu items, select

Conditional access, as shown in the screenshot:

Conditional access in Azure AD

3. Select the new policy icon at the top and enter a name for
the policy, such as Sales Team External Access MFA

4. Set the users and group assignment property to an Azure
AD security group (such as AdWorks DW Sales Team)

5. Set the Cloud apps assignment property to Microsoft
Power BI service

6. On the Conditions assignment property, configure the
locations to include any location and exclude all trusted
locations:

1. With this definition, the policy will apply to all IP
addresses not defined as trusted locations in
Azure AD

7. On the Grant access control property, select the checkbox
to require multifactor authentication

8. Finally, set the Enable policy property at the bottom to
On and click the Create command button:

Configure new Azure AD conditional access policy

The minimum requirements to create new conditional access
policies are the Users and groups property, the Cloud apps
property (Power BI service), and at least one access control. As
with all security implementations, conditional access policies
should be tested and validated. In this screenshot, a user within
the AdWorks DW Sales Team could attempt to log in to Power BI from
outside the corporate network. The user should be prompted

(challenged) to authenticate by providing a mobile device
number and entering an access code sent via text message.

It's important to remember that conditional access policies are in
addition to the user permissions defined in the Power BI service
and the row-level security roles created in Power BI datasets or
Analysis Services data models. The User Permissions section in C
hapter 17, Creating Power BI Apps and Content Distribution,
contains additional information on these security layers.

Azure AD conditional access policies require either an Enterprise
Mobility and Security E5 license or Azure AD Premium P2 license.
Enterprise Mobility and Security (EMS) E5 licenses include Azure
AD Premium P2 as well as Microsoft Intune, Microsoft's mobile device
management service. Additional information on features, licensing, and
pricing for EMS is available at the following URL http://bit.ly/2lmHDZt.

The following URL from MS Docs contains best practices for conditional
access policies in Azure AD http://bit.ly/2nXAjlA.

http://bit.ly/2lmHDZt
http://bit.ly/2nXAjlA

Power BI Admin Portal
The Power BI Admin Portal provides controls for administrators
to manage the Power BI tenant for their organization. This
includes settings governing who in the organization can utilize
which features, how Power BI Premium capacity is allocated and
by whom, and other settings such as embed codes and custom
visuals.

The admin portal is accessible to Office 365 Global
Administrators and users mapped to the Power BI service
administrator role. The Power BI service administrator role and
the assignment of a user to this role in Office 365 was described
in the Power BI project roles section of Chapter 7, Planning Power
BI Projects. To open the admin portal, log in to the Power BI
service and select the Admin portal item from the Settings (Gear
icon) menu in the top right, as shown in the following
screenshot:

Admin portal in Settings menu

All Power BI users, including Power BI free users, are able to
access the Admin portal. However, users who are not admins can
only view the Capacity settings page. The Power BI service
administrators and Office 365 global administrators have view
and edit access to the following seven pages:

Admin portal pages

Administrators of Power BI most commonly utilize the Tenant
settings and Capacity settings as described in the Tenant Settings
and Power BI Premium Capacities sections later in this chapter.
However, the admin portal can also be used to manage any
approved custom visuals for the organization, as well as any
embed codes associated with the Publish to web feature
described in Chapter 17, Creating Power BI Apps and Content
Distribution.

Usage metrics
The Usage metrics page of the Admin portal provides admins
with a Power BI dashboard of several top metrics, such as the
most consumed dashboards and the most consumed dashboards
by workspace. However, the dashboard cannot be modified and
the tiles of the dashboard are not linked to any underlying
reports or separate dashboards to support further analysis.
Given these limitations, alternative monitoring solutions are
recommended, such as the Office 365 audit logs and usage
metric datasets specific to Power BI apps. Details of both
monitoring options are included in the app usage metrics and
Power BI audit log activities sections later in this chapter.

Users and Audit logs
The Users and Audit logs pages only provide links to the Office
365 admin center. In the admin center, Power BI users can be
added, removed and managed. If audit logging is enabled for the
organization via the Create audit logs for internal activity and
auditing and compliance tenant setting, this audit log data can
be retrieved from the Office 365 Security & Compliance Center
or via PowerShell. This setting is noted in the following section
regarding the Tenant settings tab of the Power BI admin portal.

An Office 365 license is not required to utilize the Office 365
admin center for Power BI license assignments or to retrieve
Power BI audit log activity. Examples of assigning Power BI Pro
licenses and the Power BI service administrator role to users
from within the Office 365 admin center are included in Chapter 7,
Planning Power BI Projects. Retrieving and analyzing the Power
BI audit log data is described in the Power BI Audit Log
Activities section later in this chapter.

Tenant settings
The Tenant settings page of the Admin portal allows
administrators to enable or disable various features of the Power
BI web service. For example, an administrator could disable the
Publish to web feature described in Chapter 17, Creating Power BI
Apps and Content Distribution, for the entire organization.
Likewise, the administrator could allow only a certain security
group to embed Power BI content in SaaS applications such as
SharePoint Online.

The following diagram identifies the 18 tenant settings currently
available in the admin portal and the scope available to
administrators for configuring each setting:

Power BI Tenant settings

From a data security perspective, the first seven settings within
the Export and Sharing and Content packs and apps
groups are most important. For example, many organizations
choose to disable the Publish to web feature for the entire
organization. Additionally, only certain security groups may be
allowed to export data or to print hard copies of reports and
dashboards. As shown in the Scope column of the previous table
and the following example, granular security group
configurations are available to minimize risk and manage the
overall deployment.

Currently, only one tenant setting is available for custom visuals
and this setting (Custom visuals settings) can be enabled or

disabled for the entire organization only. For organizations that
wish to restrict or prohibit custom visuals for security reasons,
this setting can be used to eliminate the ability to add, view,
share, or interact with custom visuals. More granular controls to
this setting are expected later in 2018, such as the ability to
define users or security groups of users who are allowed to use
custom visuals.

In the following screenshot from the Tenant settings page of the
Admin portal, only the users within the BI Admin security group
who are not also members of the BI Team security group are
allowed to publish apps to the entire organization:

Security group permissions in Tenant settings

For example, a report author who also helps administer the On-
premises data gateway via the BI Admin security group would be
denied the ability to publish apps to the organization given
membership in the BI Team security group. Many of the tenant

setting configurations will be more simple than this example,
particularly for smaller organizations or at the beginning of
Power BI deployments. However, as adoption grows and the
team responsible for Power BI changes, it's important that the
security groups created to help administer these settings are kept
up to date.

Embed Codes
Embed Codes are created and stored in the Power BI service
when the Publish to web feature is utilized. As described in the
Publish to web section of the previous chapter, this feature
allows a Power BI report to be embedded in any website or
shared via URL on the public internet. Users with edit rights to
the workspace of the published to web content are able to
manage the embed codes themselves from within the workspace.
However, the admin portal provides visibility and access to
embed codes across all workspaces, as shown in the following
screenshot:

Embed Codes in Power BI admin portal

Via the Actions commands on the far right of the Embed Codes
page, a Power BI Admin can view the report in a browser
(diagonal arrow) or remove the embed code. The Embed Codes
page can be helpful to periodically monitor the usage of the
Publish to web feature and for scenarios in which data was
included in a publish to web report that shouldn't have been, and
thus needs to be removed. As shown in the Power BI Tenant
settings table referenced in the previous section, this feature can
be enabled or disabled for the entire organization or for specific

users within security groups.

Organizational Custom visuals
The Custom Visuals page allows admins to upload and manage
custom visuals (.pbiviz files) that have been approved for use
within the organization. For example, an organization may have
proprietary custom visuals developed internally, which it wishes
to expose to business users. Alternatively, the organization may
wish to define a set of approved custom visuals, such as only the
custom visuals that have been certified by Microsoft. The process
of obtaining custom visuals via Microsoft AppSource and the
details of certified custom visuals are included in the Custom
visuals section of Chapter 12, Applying Custom Visuals,
Animation, and Analytics.

In the following screenshot, the Chiclet Slicer custom visual is
added as an organizational custom visual from the
Organizational visuals page of the Power BI admin portal:

Add organizational custom visual

The Organizational visuals page provides a link (Add a custom
visual) to launch the form and identifies all uploaded visuals, as
well as their last update. Once a visual has been uploaded, it can
be deleted but not updated or modified. Therefore, when a new
version of an organizational visual becomes available, this visual
can be added to the list of organizational visuals with a
descriptive title (Chiclet Slicer v2.0). Deleting an organizational

custom visual will cause any reports that use this visual to stop
rendering.

The following screenshot reflects the uploaded Chiclet Slicer
custom visual on the Organization visuals page:

Organization Visuals page in Power BI admin portal

Once the custom visual has been uploaded as an organizational
custom visual, it will be accessible to users in Power BI Desktop.
In the following screenshot from Power BI Desktop, the user has
opened the MARKETPLACE of custom visuals and selected MY
ORGANIZATION:

 Power BI Custom visuals

In this screenshot, rather than searching through the
MARKETPLACE, the user can go directly to visuals defined by
the organization. The marketplace of custom visuals can be
launched via either the Visualizations pane or the From
Marketplace icon on the Home tab of the ribbon. Additional
details on adding custom visuals are included in Chapter
12, Applying Custom Visuals, Animation, and Analytics.

Organizational custom visuals are not supported for reports or
dashboards shared with external users. Additionally,
organizational custom visuals used in reports that utilize the
publish to web feature will not render outside the Power BI
tenant. Moreover, Organizational custom visuals are currently a
preview feature. Therefore, users must enable the My
organization custom visuals feature via the Preview features tab
of the Options window in Power BI Desktop.

Usage metrics reports
The Power BI service provides standard usage metrics reports
for both dashboards and reports. These reports, which
themselves are Power BI reports, provide quick insights to
fundamental user adoption questions, such as how often the
published content is being viewed and which users are viewing
the content the most. These read-only reports can be generated
for specific dashboards and reports and can also be personalized
(edited) by saving a copy. Once a copy of a usage metrics report
has been saved, a Power BI dataset of usage metrics will be
created for either all the dashboards or all the reports in the app
workspace. The usage metrics datasets, which are updated by the
Power BI service for the last 90 days of activity, and the saved
usage reports can then serve as a foundation for a lightweight
but robust monitoring solution for the app workspace.

For example, the Global Sales app described in the previous
chapter contains several dashboards and reports with some of
the reports containing multiple report pages. The following 11-
step process and supporting diagram walk through the creation
of two usage metrics datasets (dashboards and reports), two
usage metrics reports, and a dashboard summarizing usage
metrics for the app workspace across dashboards and reports:

1. Access the app workspace in the Power BI service
containing the content to monitor:

1. A Power BI Pro license and edit rights to the app
workspace are required to access usage metrics

data.

2. From the Dashboards page, select the View usage metrics
report icon (line chart symbol) under ACTIONS for one
of the dashboards, as shown in the following screenshot:

View usage metrics action

3. Once prompted, click the View usage metrics button on
the Usage metrics ready popup textbox:

1. Alternatively, click the View usage metrics report
icon again for any of the dashboards in the
workspace.

A Power BI report containing usage metrics for the
selected dashboard will be displayed, such as the
following:

Dashboard Usage Metrics report

In addition to the slicers and visuals in the preceding
screenshot, the usage metrics report page includes
visuals for total views, total viewers (users), and views
by user table that identifies the User Principal Name
(login) and display name of the user.

At this point, usage metrics reports specific to each
dashboard in the workspace will be accessible on
demand via the View usage metrics report icon.

4. With the usage metrics report opened, click Save as from
the File menu dropdown to save a copy of the report:

1. A report named Dashboard Usage Metrics Report
- Copy will be saved in the reports group.

2. Additionally, a dataset will be created named
Dashboard Usage Metrics Model - Copy.

5. Open the report saved from step 4 and click Edit report.
6. In edit mode, remove the Report level filters that are

specific to a single dashboard, as identified in the
following screenshot:

Usage metrics report filtered for dashboard

7. Create a separate report page that uses the DisplayName
column of the Dashboards table to analyze usage of the
dashboards within the workspace.

8. Save the modifications from the file menu dropdown
(File | Save).

9. Repeat steps 1 through 8 for a Power BI report in the
same app workspace:

1. Use the DisplayName column from the Reports table
and the ReportPage column from the Views table to
design a usage metrics report for the reports in

the workspace.

10. Create a new dashboard named Usage Metrics.
11. Pin report visuals from both the dashboard usage metrics

report and the report usage metrics report to the Usage
Metrics dashboard:

1. By default, the included in app property will be
disabled for usage metrics reports, and the
dashboard containing visuals from the usage
metrics reports.

At this point, the workspace will include one usage metrics
report for dashboards, one for reports, and two Power BI
datasets supporting these usage reports, as shown in the
following screenshot:

Report and dashboard usage metrics datasets

Via the Create report action icons (chart symbol) included in the
preceding screenshot, additional usage reports can be created in
the Power BI service. Additionally, new reports can be created in
Power BI Desktop by connecting to either of these two datasets,
as described in the Live connections to Power BI datasets
section of Chapter 11, Creating and Formatting Power BI Reports.

Excluding any new reports or dashboards, the monitoring
solution for the Global Sales workspace is structured as follows:

Usage metrics reporting: Global Sales workspace

Depending on the importance and size of the workspace, more
reports and dashboards can be created to provide further insight
into the adoption of the content. For example, the usage metric
reporting may indicate that only one or two reports of an app
workspace are being utilized, or that one particular report page
of a report is most important to users. The BI team can use this
information to engage with business stakeholders to better
understand the reasoning behind the usage patterns reported.

The usage metrics data includes both Power BI Pro and Power BI
Free users. For example, this includes Power BI Pro users who
are members of the app workspace with edit rights to the
content, as well as Power BI Free users who only access the
content via a Power BI app. A DistributionMethod table in both the
dashboard and report usage metrics datasets contains a Name field,
which identifies how the user obtained access to view the specific
item. This access will be one of the following three methods—as a
member of the app workspace, as a recipient of a shared
dashboard or report, or by installing an app.

User views of content through a Power BI app are currently counted as
content packs but, as mentioned in the previous chapter, content packs
are being replaced by apps. Additional information on the metrics and
columns included in the usage metrics datasets is available in MS Docs
via the following URL: http://bit.ly/2nTyua4.

Although very useful for app workspaces that support many
users or important scenarios (such as executive dashboards),
usage metrics reports are ultimately limited to individual
workspaces. Additionally, the usage metrics don't include other
activities of interest to administrators, such as when the newly
scheduled refresh is configured or when a data source from a
gateway is removed. A more comprehensive monitoring dataset
inclusive of all app workspaces and all Power BI activities is
available via the Office 365 audit logs for Power BI, as described
in the following section.

http://bit.ly/2nTyua4

Audit logs
Power BI activities stored in the Office 365 audit logs provide
administrators with a complete view of user activities in the
Power BI service. Each log event record identifies the user, the
date and time of the activity, the type of activity, such as printed
a report page, and the item in Power BI, such as the report that
was printed. This level of detail at the tenant level across all
primary activities helps administrators answer both high-level
usage and adoption questions, as well as targeted compliance
questions.

For example, the audit logs could prove that the volume of users
and their level of engagement with Power BI reports and
dashboards is increasing. Alternatively, an administrator could
investigate the activities of just a few users to ensure they're only
engaging in activities aligned with their role. Perhaps most
importantly, an IT organization can understand what Power BI
content is being utilized by the business. In the event that a few
reports or dashboards become very popular, some level of
engagement may be appropriate to ensure the underlying dataset
is accurate and secure or migrate the content to an IT-supported
solution.

Once enabled in the Power BI admin portal, the audit log data
can be retrieved on an ad hoc basis or, more commonly,
retrieved on a recurring basis as part of a continuous monitoring
and governance solution. To minimize the setup and
maintenance of these monitoring solutions, Microsoft has made
available PowerShell scripts that export Power BI audit log data
to a CSV file format. Additionally, a Power BI solution template

is available with built-in audit log retrieval and prebuilt
monitoring reports.

The first step in utilizing the audit logs is to enable the create
audit logs setting in the Power BI admin portal. This setting in
the Audit and Usage settings group of the Tenant settings page is
set at the organizational level, as shown in the following
screenshot:

Enable Power BI audit logs

Once the audit log setting is enabled, user activities start to be
recorded in the audit logs with a delay of 12 hours or less from
their occurrence and will be stored for 90 days. This log data can
be accessed directly from the Office 365 admin center or
remotely via PowerShell scripts and solution templates. In terms
of direct or ad hoc access, an Office 365 global administrator or a
user with permission to the Security & Compliance Center can
log in to Office 365 (www.office.com) and select the Security &
Compliance app icon, as shown in the following screenshot:

http://www.office.com

Office 365 app menu

Alternatively, a link to the Office 365 admin center is provided
on the Audit logs page of the Power BI admin portal. This links
directly to the Audit log search interface of the Security &
Compliance Center described later.

From the Security & Compliance Center, the Search and
Investigation menu at the bottom (magnifying-glass icon) can be
expanded to expose an Audit log search item. Select Audit log
search and then specify the Power BI activities to search for, the
start and end dates for the search, and, optionally the users, as
shown in the following screenshot:

Audit log search in Security & Compliance Center

In this example, the following four activities are searched for—
Created Power BI gateway, created Power BI dataset, deleted
Power BI gateway, and deleted Power BI dataset. The Filter
results button can be used to filter the results of the search by
any of the search columns (User, Activity, Item). The Export results
dropdown supports two formats to be exported to a comma-
separated value (CSV) file. Specifically, the Save loaded
results option exports only the columns displayed in the search.
The Download all results option contains many more
columns, such as the name of the app workspace and the user's
web browser. However, these details are embedded in a
single JSON column (AuditData), such as the following activity
record:

{"Id":"9933734c-0dbd-ba5b-41ce-42d89b7ac8cd","RecordType":20,"CreationTime":"2018-02-10T21:17:18","Operation":"CreateDataset","OrganizationId":"77243ddd-cf6a-466f-9246-06edb8809332","UserType":0,"UserKey":"10033FFFA28BA395","Workload":"PowerBI","UserId":"JenLawrence@abcdef.onmicrosoft.com","ClientIP":"12.123.645.99","UserAgent":"Mozilla\/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit\/537.36 (KHTML like Gecko) Chrome\/99.0.3539.132 Safari\/537.36","Activity":"CreateDataset","ItemName":"Dashboard Usage Metrics Model",

As shown in the preceding activity record associated with the
creation of a Power BI dataset, many more attributes of the
activity are available in the audit logs which aren't displayed
from the main Audit log search results interface. To view these
additional details from the Audit log search page, one of the
result records must be selected, thus prompting a Details
window specific to this user activity.

 Object IDs such as WorkspaceID and DatasetID can be used to
programmatically manage Power BI content via the Power BI REST
API, as described in the Staged Deployments section of Chapter
14, Managing Application Workspaces and Content.

A BI team would expect the creation and deletion of datasets and
gateways to be infrequent activities relative to the creation and
deletion of reports and dashboards. If many datasets are being
created, this could be a sign of inefficient resource utilization and
version control issues. For example, rather than four reports
using Live connections to a single published dataset, each report
may have its own dataset, which requires its own resources and
data refresh schedule (if import mode).

Excluding global admins, an Exchange Online license is required
to access the auditing section of the Office 365 Security &
Compliance Center. Additionally, administrators who are not
global admins need to be mapped to an Exchange admin role
that provides access to the audit log. As shown in the following
screenshot, the Permissions menu of the Security & Compliance
Center provides a link to the Exchange Admin center to add
users to the necessary roles to access the audit logs:

Security & Compliance Center: Permissions

Clicking the Exchange admin center link highlighted in the
preceding screenshot allows a global admin to assign a user to an
Exchange Online role group, such as Compliance Management,
that includes access to audit logs.

There are currently 45 distinct Power BI activities tracked in the audit
logs, including the sharing of dashboards and reports, any updates to an
organization's Power BI settings (Tenant settings), and activities related
to the management of Power BI Premium capacities as described in the
next section. The list of Power BI activities audited and their descriptions
is available and updated at MS Docs via the following URL http://bit.ly/2skXj
AB.

The maximum date range for an audit log search is 90 days and
the date/time of each activity is presented in Coordinated
Universal Time (UTC) format. Additionally, a maximum of
1,000 events (one user and one activity) can be displayed per
audit log search. Given these limitations and the manual nature
of audit log searches, a scheduled log retrieval process is
necessary to support a more robust monitoring solution.

http://bit.ly/2skXjAB

Audit log monitoring solutions
To internally develop a monitoring solution based on the audit
log data, a PowerShell script which searches and exports the
audit log data to a CSV file can be scheduled. This CSV file is
then used as the source of an extract-transform-load (ETL)
or extract-load-transform (ELT) process to persist the log
data in a source system, such as a SQL Server database. Finally,
Power BI Desktop can be used to implement remaining
lightweight transformations, create DAX measures, and develop
the monitoring reports.

The following list of steps and supporting screenshots describe
the monitoring workflow in detail:

1. A PowerShell script (.ps1) is executed on a schedule and
generates a CSV file of Power BI activities:

The following sample script searches the audit log for
Power BI activities since yesterday and exports the
data to a CSV file:

$UserCredential = Get-Credential
$CurrentDate = get-date
$Yesterday = $CurrentDate.AddDays(-1)
$csvFile = "C:\Users\Brett Powell\Desktop\PowerBIAuditLogs.csv"
$Session = New-PSSession -ConfigurationName Microsoft.Exchange -ConnectionUri https://outlook.office365.com/powershell-liveid/ -Credential $UserCredential -Authentication Basic -AllowRedirection

Import-PSSession $Session

$result = Search-UnifiedAuditLog -StartDate $Yesterday -EndDate $CurrentDate -RecordType PowerBI -ResultSize 5000 | Export-Csv $csvFile

The ResultSize parameter (count of rows) of the Search-
UnifiedAuditLog cmdlet is limited to 5,000. If not
specified, the default value is 100. Depending on the
level of usage in the organization, the frequency of
executing the script and overall process will need to be
adjusted accordingly to capture all Power BI activities.

2. An ETL (or ELT) process is executed to access the CSV
file and load the new data to a data source:

1. The results of each audit log search can contain
duplicate rows. However, the Identity column
included in the search results can be used to
eliminate these duplicate rows.

In an on-premises MSBI environment, a combination
of SQL Server Agent, SQL Server Integration
Services (SSIS), and the SQL Server relational
database engine could be used to implement the data
retrieval process. For example, an Agent Services job
could be scheduled to sequentially execute the
PowerShell script, an SSIS package, and optionally a
SQL Server stored procedure.

3. A Power BI dataset (.PBIX) with a connection to the data
source in step 2 is refreshed:

1. The M query used to load the data model can
include transformations to parse the JSON
column and expose all columns to the data model,

as shown in the following screenshot.

2. As an import mode dataset, additional data
sources, such as Active Directory, could be
included in the refresh process.

3. Additionally, the refresh of this dataset could be
triggered to execute immediately following the
completion of step 2 via the Power BI Rest API, as
described in the Power BI REST API section of Chap
ter 14, Managing Application Workspaces and
Content.

In the following screenshot, audit log search result data has been
connected to from Power BI Desktop:

Power BI Desktop: Parse JSON transformation

As shown in the preceding screenshot, a Parse JSON command
is available on the Transform tab of the Power Query Editor.
Selecting the AuditData column containing the JSON and then the

Parse JSON transform converts each cell value into a record
value. Once parsed, select the outward facing arrows next to the
AuditData column header to convert these records into individual
columns.

Technically, the two steps described here in the Power Query Editor are
converted into M expressions, which utilize the Table.TransformColumns() and
Table.ExpandRecordColumn() functions, respectively. As an essential M query to a
monitoring solution, a review of the M syntax via the Advanced Editor
and other enhancements, such as parameterizing the source file location,
is recommended.

With the parsed JSON column expanded, 19 columns with an
AuditData prefix will be available to load to the data model, as
shown in the following screenshot:

Transformed audit log data

As shown in the preceding screenshot, the columns expanded
will be of the Any data type in M (ABC123 icon). As Any type
columns, these columns will be loaded to the data model as Text
data type columns. Therefore, the CreationDate column, which is
available outside the AuditData (JSON) column, should be used on
the reporting layer as this column will be stored as a Date/Time
type.

With a sound data retrieval process in place, DAX measures
could be authored, such as the count of active users, the average
number of users per day and per month, and the count of created
reports or dashboards. To support security and compliance,
measures and visualizations could be created targeting high-risk
or undesirable activities, such as exporting report visual data or
publishing reports to the web. For example, a card visual
representing the count of data export activities could be pinned

to a Power BI dashboard and a data alert could be configured
against this dashboard tile.

Audit logs solution template
As an alternative to an internally developed monitoring solution,
a Power BI solution template is now available containing an end-
to-end MS Azure architecture for analyzing Power BI usage. The
Power BI Usage metrics solution template created by Neal
Analytics (with collaboration from Microsoft) allows the
organization to leverage prebuilt data flows and Power BI usage
reports as well as further customize the monitoring solution to
meet their needs. Specifically, the solution template utilizes
Azure Logic Apps for a recurring ETL process and Azure SQL
Database to store the audit log data. Additionally, a robust Power
BI dataset (relationships, measures, formatting) and several
well-designed report pages will be included as a Power BI
Desktop file.

The following screenshot is from the Apps Summary report page
of the Power BI Usage metrics solution template:

Power BI Usage metrics solution template

Several summary-level report pages similar to this example are
included with the solution template, such as Views Summary and
Dataset Summary. Additionally, the template contains multiple
detail report pages (such as User Details and Scheduling Details)
that expose all relevant attributes of specific user actions, or
events in the Power BI service, such as editing a report or
exporting a report. Between the dataset, the visualization layer,
and the tested architecture in MS Azure, organizations can
quickly derive value from the solution template and target their
efforts to further improve monitoring visibility if necessary.

Links to Power BI solution templates in AppSource are available
from PowerBI.com as well as Power BI Desktop. The following
screenshot identifies the Solution Templates link under the
Solutions menu in PowerBI.com:

Power BI Solution Templates

In Power BI Desktop, a Solution Templates icon on the Help tab
links to the solution templates in AppSource as well. The
solution templates in AppSource include introductory videos, a
Test Drive feature to interact with the Power BI report
containing sample data, and a cost estimator document under
the Learn More section.

Additionally, a Get it Now option provides further details on the
architecture and the requirements of the template. In the
following screenshot, the Free Trial option of the new Power BI
Usage metrics solution template has been selected:

https://powerbi.microsoft.com/en-us/

Power BI solution template: Get It Now

The preceding screenshot from the Getting Started tab is
representative of the Get it Now option for other solution
templates. Specifically, the templates connect to a specific source
or service, process or transform that data, and load Azure SQL
Database for analysis by a Power BI dataset and report. It's
assumed that the current Free Trial option will be replaced with
a Get it Now option later in 2018.

The natural trade-off for the solution template, of course, is the
monthly cost of utilizing the underlying Azure resources. This
cost will vary significantly based on the volume of users, and
thus the volume of data to process and store. An estimate of this
cost is not available as of this writing, but a cost estimator
document is expected, similar to the documents available for
other solution templates in Microsoft AppSource. For many
organizations, this monthly cost (for example, $400) could be of
great value relative to the development and operational costs

associated with an internally developed monitoring solution.

Power BI Premium capacities
One of the most important responsibilities of a Power BI
administrator is the management of Power BI Premium
capacities. Power BI Premium is fully described in the following
chapter but, from a Power BI service administration perspective,
Power BI Premium can be thought of as an organization's
dedicated hardware resources to support the use of the Power BI
service. Not all of an organization's content needs to be hosted in
premium capacity. However, these resources enable the
distribution of content to read-only Power BI Free users and they
provide more consistent performance, among other scalability
and management benefits.

Power BI Premium SKUs (such as P1 and P2) are available on the
Purchase services page of the Office 365 admin center. Given that Power
BI Premium can also be used to deploy the Power BI Report Server, an
example of a premium SKU was included in the Power BI Report Server
Licensing section of Chapter 16, Deploying the Power BI Report Server. The
specific actions involved in executing purchases of premium capacities,
as well as cancellations of existing Premium subscriptions, is included
via the following URL http://bit.ly/2HeiXtG.

Office 365 global administrators and users assigned to the Power
BI service administrator role automatically have the right to
administer premium capacities in the Power BI admin portal. An
administrator's role in relation to premium capacity is to ensure
that the provisioned resources are utilized according to the
organization's policies, and that sufficient resources are available
to support the existing workload.

Power BI Premium administrators should be familiar with the
following list of responsibilities:

http://bit.ly/2HeiXtG

Create a new capacity with the available (purchased) v-
cores:

An organization may choose to dedicate a
premium capacity to a specific project or
application

In other scenarios, one capacity could be
dedicated self-service projects while another
capacity could be used by corporate BI projects.

See Chapter 19, Scaling with Premium and
Analysis Services for additional details on
allocating premium capacity.

Grant capacity assignment permissions to users or
security groups of users:

This enables Power BI Pro users who are also
administrators of app workspaces to assign their
workspaces to premium capacity

This setting can also be disabled or enabled for
the entire organization

Assign workspaces to premium capacity, or remove a
workspace from premium capacity, in the Power BI
admin portal:

This is an alternative and complementary
approach to capacity assignment permissions

Power BI service administrators can manage
existing capacities and assign workspaces in bulk:

These bulk assignments can be by user, by
security group of users, or for the entire
organization

Monitor the usage metrics of premium capacities to
ensure sufficient resources are available:

The Power BI Admin portal includes utilization
monitoring for each premium capacity

Additionally, activities involving premium
capacities such as the migration of an app
workspace to a premium capacity are included in
the audit logs described earlier in this chapter

Change the size on an existing capacity to a larger (scale
up) or smaller (scale down) capacity node:

As more users and content utilize a specific
capacity, it may be necessary to scale up or to
allocate certain app workspaces to a different
premium capacity or to shared (free) capacity

Assign a user or group of users as capacity administrators
for a capacity:

 This can be appropriate to support large,
enterprise deployments with multiple capacities
and many app workspaces

Given the importance of performance to any BI project, as well
as the cost of Power BI Premium capacities, it's important for
BI/IT teams to plan for an efficient, manageable allocation of
premium capacity as described in the next chapter. This
allocation plan and any project-specific decisions need to be
communicated to the premium administrator(s) for
implementation. The following sections describe the
responsibilities identified here and related considerations in
greater detail.

Capacity allocation
Power BI Premium provides organizations with significant
flexibility for both allocating their resources to premium
capacities, as well as assigning Power BI content to those
capacities. A single premium capacity can be provisioned and
created for an organization or, for larger and more diverse
deployments, multiple premium capacities can be created with
different sizes (CPU, memory, bandwidth) appropriate for their
specific workloads.

In terms of allocating resources to premium capacities, an
organization is only limited by the number of virtual cores (v-
cores) that have been purchased. For example, an organization
could initially purchase a P2 capacity, which includes 16 v-cores.
Once purchased, a P2 capacity could be created in the Capacity
settings page of the Admin portal that utilizes all of these cores.
However, at some later date, this capacity could be changed to a
P1 capacity which only uses 8 v-cores. This would allow the
organization to create a second P1 capacity given the eight
remaining v-cores available. Alternatively, a second P2 capacity
could be purchased, providing another 16 v-cores. With 32 total
v-cores purchased by the organization, an existing P2 capacity
could be increased to a P3 capacity (32 v-cores).

The following diagram illustrates this example of capacity
allocation:

Power BI Premium capacity allocation

Regardless of the premium SKU (P1, P2, or P3), the combination
of SKUs purchased in the Office 365 admin center, or the
number of specific SKUs (instances), an organization can use the
total number of v-cores purchased as it wishes. For example,
purchasing a P3 SKU provides 32 v-cores, the same as
purchasing four instances of a P1 SKU (8 X 4 = 32).

For organizations getting started with Power BI and that are
comfortable with actively managing their premium capacities,
individual instances of the P1 SKU with no annual commitment (month-
to-month) could make sense. For example, a single P1 instance could be
purchased to start and then, if it's determined that more resources are
needed, a second P1 instance could be purchased, making 16 cores
available for either a P2 capacity or two P1 capacities.

In this diagram, an organization has chosen to isolate the sales
and purchasing app workspaces to their own P1 capacities with
eight v-cores each. This isolation ensures that the resources
required for one workspace, such as the user's connection to the
Sales app, will not impact the other workspace (Purchasing).
Additionally, the Finance and Marketing workspaces have been
left in shared (free) capacity for now, but could later be assigned
to Capacity A or Capacity B if sufficient resources are
available.

Whether Power BI workspaces (dashboards, reports, datasets)
are allocated to premium capacity or shared capacity is
transparent to end users. For example, the same login and
content navigation experience in the Power BI web service and
Power BI mobile apps applies to both premium and shared
capacity. Therefore, organizations can selectively allocate certain
workspaces, such as production workspaces accessed by many
Power BI Free users, to premium capacity while allowing other
small or team workspaces to remain in the shared capacity.

Different patterns for deploying premium capacity are discussed
in the following chapters but, at a minimum, administrators
should be familiar with the relationships between purchased
premium capacity and premium capacities configured for an
organization, as well as the assignment of app workspaces to
those capacities.

Create, size, and monitor
capacities
Office 365 global admins and Power BI service administrators
can view, create, and manage all Power BI Premium capacities
via the Admin portal. In the following screenshot from the
Capacity settings page of the Admin portal, eight v-cores have
been provisioned for the organization and a single P1 capacity
has been created, which consumes all of these cores:

Admin portal: Capacity settings

As shown in the preceding screenshot, a Set up new capacity
button is located above the list of premium capacities that have
been configured. In this example, since all purchased v-cores

have been used by a single capacity, the Set up new capacity
button is grayed out. In the event that v-cores are available for a
new capacity, clicking Set up new capacity button would launch a
setup window, such as the following:

Set up new Premium Capacity

In this example, nine v-cores are available for the new capacity
and thus a P1 capacity requiring eight v-cores can be created.
The capacity is named and the capacity administrator(s) for the
new capacity are defined. The Capacity size dropdown will
expose all different capacity sizes (P2, P3) but sizes requiring
more v-cores than the volume of v-cores currently available will
be grayed out. Once these properties have been configured, click
Set up to complete the process.

Note that the Capacity size and Capacity admins properties are
required to set up the new capacity. Each capacity must have at
least one capacity admin, who will have full administrative rights
to the given capacity. Additional information on capacity admins
is included in the Power BI Capacity Admins section later in this
chapter.

Change capacity size
At some point after a capacity has been created, it may be
necessary to change the size of the capacity. For example, given
increased adoption of Power BI, the P1 SKU may be insufficient
to support the current workload and thus an additional eight v-
cores could be purchased with the intent to scale up the existing
capacity to a P2 capacity size (16 v-cores). Alternatively, an
admin may wish to view the recent utilization of a premium
capacity to help determine whether additional app workspaces
can be assigned to the capacity.

To change a capacity size and to view the utilization for a
capacity, click the name of the capacity from the Capacity
settings page described earlier. In the following screenshot, the
Capacity P1 #1 8GB model from the Capacity settings screenshot
earlier has been selected:

Manage premium capacity

A yellow Change capacity size button is exposed below the three
usage metrics (CPU, Memory thrashing, and Direct Query).
Selecting this button launches a simple window with a Capacity
size dropdown, such as the Capacity size dropdown used for
setting up a capacity. In this scenario, all capacity size options
are grayed out in the Change capacity size window since the P1
capacity consumes all available v-cores. Nonetheless, with just a
few clicks in the Admin portal, an admin can scale up or down a
capacity.

Monitor premium capacities
The three usage metrics displayed in the manage capacity screen
have built-in KPI formatting and conditional logic for good
(green), marginal (yellow), and critical (red) statuses. Depending
on the type of datasets (import, DirectQuery) and many other
factors (such as usage patterns and query complexity), any of the
three resources (CPU, memory, bandwidth) could represent a
bottleneck.

For example, a P1 capacity has only 25 GB of RAM and thus will
not be suitable for very large import (in-memory) datasets. It's
recommended to monitor these metrics and to make
adjustments if necessary to ensure users have an acceptable
experience in terms of performance and responsiveness.

The usage metrics are driven by hourly time windows of activity
for the given capacity over the past seven days. For example, the
CPU usage metric (far left) will count the number of hours out of
the last 168 hours (7 days * 24 hours) that experienced CPU
utilization over 80%. These instances of high CPU utilization
could be driven by the refresh process of an import mode dataset
or users viewing and clicking through reports. During these
high-CPU hours, users may experience poor performance when
accessing or interacting with reports.

The refresh process for large, in-memory Power BI datasets and
Analysis Services models is CPU intensive. For this reason, most scale
out deployments of Analysis Services isolate the processing operations
from the query workload. Specifically, a dedicated Analysis Services
server would connect to the source(s) and refresh the model, and then the
updated model would be synchronized to multiple separate servers
which resolve user queries. This architecture is already available in
Azure Analysis Services and a dedicated processing server is identified

on the roadmap for Power BI Premium.

The memory thrashing usage metric (middle) measures how
often in-memory datasets are evicted from memory. Premium
capacities opportunistically keep frequently utilized datasets
loaded to memory to reduce load performance. However, with
multiple in-memory datasets assigned to a capacity, and given
the fixed amount of RAM provided per capacity (such as 50 GB
for P2), the service may unload a dataset from memory to use
this memory for other datasets. Users requesting to access an
unloaded dataset, such as viewing a report based on the dataset,
could experience long wait times for the report to display data.

The Direct Query usage metric (far right) refers to throughput or
concurrent queries over both Direct Query connections and Live
connections to Analysis Services models. In addition to V-Cores
and RAM, each premium capacity includes a connection limit for
the maximum volume of DirectQuery/Live connection queries
per second, such as 30 per second for a P1 capacity. In the event
that this limit is exceeded, the incremental queries beyond the
throughput limit will be forced to wait.

For example, in the event that 80 DirectQuery or Live
connection queries are received by the P1 premium capacity, 30
queries will be executed in the first second with no delay.
However, another 30 queries will have to wait one second before
being executed, and finally, the remaining 20 queries will have to
wait two seconds before executing. This wait time is in addition
to the time required to execute the requested query by the data
source system and thus represents a potential bottleneck for
large-scale Power BI deployments with DirectQuery and Live
connection data sources, if appropriate premium capacities are
not provisioned.

As shown in the screenshots and diagram in this section,
administrators have tools to monitor the performance of

premium capacities and to scale up and down as an
organization's needs and available resources allow. Once
premium capacities have been created and sized, the next step is
to assign app workspaces to these capacities so that an
organization's content is moved from free (shared) capacity to
the appropriate dedicated premium capacity.

Premium capacities can be allocated at a granular level, such as
individual app workspaces, or broadly applied to all workspaces
of an organization. Additionally, as described in the following
sections, Power BI administrators can also delegate
administrative rights over premium capacities, as well as
authorize certain Power BI users to assign workspaces to
premium capacity.

App workspace assignment
Just as organizations have the flexibility to allocate their
purchased v-cores across one or multiple premium capacities,
there are also multiple options for assigning app workspaces to
premium capacity. To bulk assign multiple workspaces to a
capacity within the Admin portal, click the Assign workspaces
button for a capacity. This button and the list of workspaces
already assigned to the capacity is below the Change capacity
size button described in the previous section.

In the following screenshot, two workspaces have been selected
for assignment to a premium capacity:

Assign workspaces

As shown in the preceding screenshot, the workspaces associated
with individual users or groups of users can also be assigned to a
premium capacity. If applied to specific users, any existing

workspaces assigned to those users, including workspaces
already in a separate capacity, will be moved to the capacity
assigned.

As an alternative or complementary approach to assigning
workspaces in the admin portal, administrators of a capacity can
also grant users or groups of users the permission to assign
workspaces to premium capacity. In the following screenshot, a
user (brettp76) is granted assignment permission to a premium
capacity:

Assignment Permissions

The USER PERMISSIONS options, which also includes Capacity
admins described in the following section, is also just below the
Change capacity size button, such as the Assign workspaces
button. Users granted this permission will also require
administrative rights to any app workspace they wish to assign to
premium capacity.

In the following screenshot, a Power BI Pro user (brettp76) and
administrator of an app workspace have opened the Edit

workspace dialog to assign a workspace to premium capacity:

App workspace administrator: Assign to premium capacity

The differences between app workspace administrators and
members were described in the Application Workspaces section
of Chapter 14, Managing Application Workspaces and Content.

Capacity admins
One or more capacity admins are required for each premium
capacity, and these users do not have to be an Office 365 global
admin or a Power BI service admin. Users assigned as capacity
administrators have the same administrative rights to the given
capacity as Power BI Service admins, such as changing capacity
size and assigning workspaces or user assignment permissions.

For example, a Power BI Pro user could be assigned as a capacity
admin and could access this capacity via the Admin portal just
like a Power BI admin. However, only the capacities for which
the user is a capacity admin would appear on the Capacity
settings page. Additionally, other pages of the Admin portal,
such as Tenant settings, would not be visible or accessible to the
capacity admin.

Summary
This chapter reviewed the features and processes applicable to
administering Power BI for an organization. These included the
configuration of tenant settings in the Power BI admin portal,
analyzing the usage of Power BI assets, and monitoring overall
user activity via the Office 365 audit logs. Additionally,
important administrative capabilities of Azure Active Directory,
such as conditional access policies and external guest users, were
also described. Moreover, the tasks and options available to
administer Power BI Premium capacity were also detailed.

The following chapter looks at the options for scaling Power BI
to support increased user adoption, larger data sets, and
enterprise BI solutions. This includes methodologies for
allocating Power BI Premium capacity to workloads, leveraging
the additional benefits of Power BI Premium, and migrating
Power BI datasets to Analysis Services.

Scaling with Premium and
Analysis Services
For many organizations, the deployment of Power BI entails the
reporting and self-service needs of hundreds or even thousands
of users, as well as massive datasets. Power BI Premium and
Analysis Services are positioned to address these needs via
workload-based pricing, flexible scale-up and scale-out options,
and enterprise-grade semantic modeling features. Although
organizations and certain projects may start out with Power BI
Desktop and shared capacity in the Power BI service, the
utilization of Power BI Premium capacity and optionally the
migration to Analysis Services is often essential to deliver the
scale, return on investment (ROI), and administrative
controls of an enterprise BI platform.

This chapter begins with a review of the capabilities enabled by
Power BI Premium capacities and the top considerations in
provisioning this capacity. In addition to premium capacities,
Azure Analysis Services (AAS) and SQL Server Analysis
Services (SSAS) are introduced as enterprise BI modeling tools
with features that address limitations with Power BI Desktop.
Finally, the steps and considerations in the migration of a Power
BI Desktop file to an Analysis Services model are described.

In this chapter, we will review the following topics:

Power BI Premium

Power BI Premium provisioning factors

Power BI Premium capacity allocation

Analysis Services versus Power BI datasets

Azure Analysis Services and SQL Server Analysis Services

Migration from Power BI dataset to Analysis Services
model

Power BI Premium
Power BI Premium consists of dedicated capacity (hardware)
that an organization can provision to host some or all of its
Power BI content (datasets, reports, and dashboards). As an
alternative to the free clusters of capacity provided by Microsoft
and shared by many organizations, premium capacities are
isolated to a specific organization and thus are not impacted by
the use of Power BI by other organizations. Another very
important benefit of this isolation is that the provisioning
organization can utilize their capacity as needed and is not
constrained by the limits imposed on shared (free) capacity, such
as dataset sizes and refresh frequencies. Additionally, as a cloud
service managed by Microsoft, organizations have great
flexibility to scale, allocate, and manage premium resources
according to their preferred allocation methodology and
changing requirements.

The top benefit of Power BI Premium is the ability to provide
read-only access to Power BI Free users and thus cost-effectively
scale Power BI deployments based on workloads rather than
individual user accounts. This is particularly essential for large
organizations with thousands of users, the majority of which
only need the ability to view and optionally interact with
content. If Power BI content is hosted in a premium capacity, the
users consuming content such as via Power BI apps can view and
interact with the content, such as making filter selections on a
report or viewing a mobile-optimized dashboard on Power BI
mobile applications. Power BI Premium enables organizations to
limit the assignment of Power BI Pro users to those who will
create and distribute content and to focus on provisioning and

allocating premium resources according to the use cases and
needs of workloads within the organization.

Prior to Power BI Premium, the cost and management overhead of
assigning pro licenses to all users in an organization was the main
barrier to large-scale deployments. From a customer's perspective, it
simply doesn't make sense to pay the same price for a user that only
views a few reports and dashboards each week as for a BI developer
who's working in Power BI constantly. Additionally, as usage patterns
and the scope of BI solutions can change rapidly, the ability to quickly
scale up or down premium resources and thus only pay for what's
needed, similar to other cloud services, was a top request from
customers.

Additionally, Power BI Premium capacity can be used to deliver
Power BI content to users in applications and environments
outside of the Power BI service. For example, premium capacity
can be used to embed Power BI visuals in custom applications, in
other SaaS applications such as SharePoint Online, and can be
used to license the Power BI Report Server. Details regarding the
Power BI Report Server and alternative content distribution
methods are included in Chapter 16, Deploying the Power BI
Report Server, and Chapter 17, Creating Power BI Apps and
Content Distribution, respectively.

The premium capacity-based licensing model, which currently
starts at $5,000 per month for a P1 SKU, implies the following
three fundamental questions:

1. How much premium capacity should be provisioned?
2. How should provisioned capacity be allocated?
3. What can be done to minimize capacity utilization and

thus resource costs?

Guidance and consideration of these questions are included in
the following sections.

Premium Embedded SKUs (EM3), which are exclusive to embedding
Power BI content in applications or services such as SharePoint Online,
have a lower starting price point and fewer resources. As most
organizations will leverage the Power BI service and mobile apps for
large-scale deployments, Power BI Premium P SKUs are the focus of this
chapter.

Power BI Premium capabilities
Power BI Premium already provides several additional
capabilities beyond the ability to distribute content to read-only
Power BI Free users. As described in Chapter 18, Administering
Power BI for an Organization, organizations have full control
over their provisioned resources and therefore, unlike
provisioning on-premises hardware, can quickly and easily
adjust the amount and allocation of premium resources. For
example, with v-core pooling, an organization can choose to
distribute the 32 v-cores of a P3 capacity SKU across two P1
capacities and a single P2 capacity (8 + 8 +16 = 32). Likewise,
with single-click scale up, an organization could provision an
additional 8 v-cores by purchasing a P1 SKU and then change an
existing P1 capacity to a P2 capacity, which requires 16 v-cores.
The details of the hardware of each premium capacity node
(CPU, RAM, and bandwidth) and the limits imposed on using
those nodes are included in the Premium capacity nodes section.

The following table describes 12 capabilities of Power BI
Premium that are either currently available or have been
identified by the Power BI team as a potential capability in the
future:

Power BI Premium capabilities

Some of the capabilities identified in this table enable completely
new scenarios for projects involving Power BI datasets created
with Power BI Desktop. For example, up to a 10 GB dataset can
be hosted in Premium capacity currently and much larger
datasets will be supported in the future. Likewise, a dataset can

be configured to refresh every 30 minutes in premium capacity
and this frequency will also increase in the future. Incremental
data refresh is expected to be delivered by mid-2018, and this
will address a critical gap in the ability to leverage a large Power
BI dataset. The following section, Corporate Power BI datasets,
reviews the Single Dataset Across Workspaces (#7)
limitation that may also support this deployment option.

The ability to publish SQL Server Reporting Services
(SSRS) reports, also referred to as paginated reports or (.RDL
reports), to the Power BI service will be especially valuable for
organizations with significant SSRS investments. Without this
capability, these organizations have needed to deploy the Power
BI Report Server (or an SSRS server) as described in Chapter
16, Deploying the Power BI Report Server. Additionally,
connectivity parity with Analysis Services will allow
organizations to utilize familiar development and management
tools such as Visual Studio and SQL Server Management
Studio (SSMS) to apply lifecycle management processes to
Power BI datasets as they would with Analysis Services models.
Moreover, connectivity parity with Analysis Services will allow
organizations to leverage other common data visualization and
BI tools such as Tableau. For example, both Power BI and
Tableau reports could be built against a Power BI dataset
provided the dataset is assigned to a workspace in premium
capacity.

To support the largest Power BI deployments, a scale-out option
involving read-only replicas with load balancing and dedicated
data refresh nodes is mentioned in the roadmap section of the
Power BI Premium October 2017 whitepaper. This document
and other Power BI whitepapers can be accessed at the following
URL http://bit.ly/2Hu57DK.

http://bit.ly/2Hu57DK

Corporate Power BI datasets
Given the features described in the previous section, Premium
capacity can be used to support entirely new scenarios with
Power BI datasets. For example, rather than migrate a Power BI
Desktop file (.PBIX) to an Analysis Services model, as described
later in this chapter, an organization could choose to provision
the necessary Premium capacity and leverage the scalability (that
is, 10 GB+) and data refresh features available to content hosted
in Premium capacity.

Limitation of Corporate BI
datasets – Reusability
A significant barrier to leveraging a large Power BI dataset is the
link between Power BI Live connection reports and the
dataset(s) in their app workspace. For example, if an
organization wishes to create three Power BI apps targeting
three separate business units, a separate Power BI dataset
currently needs to be hosted within the app workspace for each
app. Naturally, any BI/IT organization would want to avoid
creating (and managing) copies of a Power BI dataset, including
its data model, queries, and measures.

This barrier or limitation is being worked on by the Power BI
team so that, at some point in the future, a single Power BI
dataset is expected to be able to support reports hosted in
multiple workspaces. This isolation between visualizations
(reports and dashboards) and datasets would lend itself to the
following solution architecture:

Power BI dataset supporting multiple app workspaces

As shown in the preceding diagram, a team's dataset designer(s)
could be responsible for a single but potentially very large and
complex Power BI dataset, including many fact and dimension
tables. The dataset would be hosted in a premium capacity with
v-cores and RAM aligned to its size and incremental data refresh
could be configured to only load recent or new data. From a data
visualization and distribution standpoint, report authors would
create Live connection Power BI reports based on the large
dataset (AdWorks Enterprise) and publish these reports to specific app
workspaces. These reports would be refreshed based on the
refresh schedule for the source dataset and, in the case of
DirectQuery datasets, a scheduled cache refresh could be
configured for the dashboards.

Although the capability suggested previously is not yet available, it's

assumed that both the dataset workspace and the visualization
workspaces (reports, dashboards) would need to be assigned to the same
Premium capacity.

As of February 2018, no timeline has been provided on the
availability of this feature. Therefore, even with support for
incremental data refresh and very large datasets, the need to
maintain a single, consolidated data model will lead many
organizations to choose Analysis Services models for corporate
BI solutions. Additional reasons for choosing Analysis Services
models over Power BI Desktop are included in the Analysis
Services section later in this chapter.

Premium capacity nodes
A premium capacity node can be thought of as a fully managed
server in the Azure cloud which runs the Power BI service. The
capacity node is dedicated and isolated to the organization that
provisioned the capacity and the same user experience and
functionality is delivered as the shared (free) capacity provided
by the Power BI service. Each capacity node has a set of
processing and memory resources (v-cores and RAM),
bandwidth limits, and a cost that aligns with these resources. For
example, a P1 capacity node includes 8 v-cores and 25 GB of
RAM at a cost of $5,000 per month, while a P2 capacity includes
16 v-cores and 50 GB of RAM at a cost of $10,000 per month.
When app workspaces containing Power BI content (datasets,
reports, and dashboards) are assigned to premium capacity
nodes, the resources of the given capacity node are used to
execute Power BI activities associated with this content, such as
query processing and data refresh operations.

Chapter 18, Administering Power BI for an Organization, referred
to the v-cores (virtual processing cores) of Premium capacity
nodes but didn't provide details on other resources (RAM and
bandwidth) and their relationship to Power BI workloads. For
example, if all Power BI reports will utilize a DirectQuery dataset
or a Live connection to an Analysis Services model, then the
amount of RAM provided per capacity will be much less
important than the limits on the number of connections and the
max page renders at peak times. In these deployments, the
resources provisioned for the data source system (CPU cores,
clock speed, and RAM), as well as the latency and bandwidth of
the connection between the source system and the data center

region of the Power BI tenant, would largely drive query
performance.

The following table identifies the resources associated the six EM
and P Premium capacity nodes currently available:

Premium capacity nodes

As shown in this table, as of February 2018 the largest premium
capacity node includes 32 v-cores, 100 GB of RAM, and supports
a max of 120 DirectQuery or Live connection queries per second.
Larger capacity nodes, such as a P4 with 64 v-cores and 200 GB
of RAM, will likely be released later in 2018 and will complement
a scale out (multi-node) capacity as identified in the Power BI
Premium whitepaper for October of 2017.

As shown in the Custom application embedding section of Chapter
17, Creating Power BI Apps and Content Distribution, EM SKUs are
exclusive to embedding Power BI content in applications and do not
support viewing content in the Power BI service or Power BI mobile
apps. Given these more limited workloads, EM SKUs have significantly
less resources and cost less to provision. Premium P SKUs (P1, P2, and
P3), however, support both embedding content in applications and the
usage of the Power BI service.

Microsoft Azure resources such as Azure Analysis Services or
Azure SQL Database, which can be created within the same
region as the Power BI service tenant, provide their own user
interface and tools for scaling up and down as the needs of

workloads dictate. Guidance on identifying the location of your
Power BI tenant, and thus the preferred location for Power BI
data sources, is included in the Top gateway planning tasks
section of Chapter 15, Managing the On-Premises Data
Gateway. The minimal distance between a Power BI tenant and
an Azure data source in the same data center region provides a
natural performance advantage over connections to on-premises
sources via the On-premises data gateway.

Frontend versus backend
resources
It's important to understand the composition of frontend and
backend resources in relation to Power BI workloads. For
example, although a P2 capacity provides 16 total v-cores, only 8
backend cores are dedicated to processing queries, refreshing
datasets, and server-side rendering of reports. Additionally, only
the backend of a premium capacity node, such as the 50 GB of
RAM for a P2 capacity, is exclusive to the provisioning
organization. If Power BI is only being used to create reports and
dashboards against DirectQuery or Live connection sources,
then these backend resources are less important and the
connection limit (60 per second for a P2 capacity) would be the
most relevant resource to understand and monitor.

The frontend cores (8 for a P2) are shared with other
organizations in a pool of servers responsible for the web service,
the management of reports and dashboards,
uploads/downloads, and the user experience in navigating the
Power BI service generally. Organizations that utilize Power BI
datasets in the default import (in-memory) mode will want to
ensure sufficient RAM and backend cores are available to
support both the data refresh process and the query workloads.

The following diagram illustrates the distribution of frontend
and backend resources for a P2 capacity node:

Power BI Premium Capacity node (P2)

As shown in this diagram, the backend of a capacity node can be
thought of as a dedicated server or virtual machine with a fixed
amount of CPU and RAM. It's the backend server which is
responsible for the most resource-intensive or heavy
lifting operations and thus should always be considered in
relation to the resource needs of import mode datasets assigned
to the given capacity.

In the near future, organizations will be able to fully utilize the
memory included in their capacity to host even larger Power BI
datasets (100 GB+), containing hundreds of millions or even
billions of rows. To support these scenarios, BI teams will want
to provision a capacity node with enough cores and RAM to
support the data refresh operation and user queries against this
dataset.

A factor of 2.5X is generally used to size the RAM requirements of in-
memory Power BI datasets and Analysis Services Tabular models. For
example, a 10 GB Power BI dataset (.PBIX), would require 25 GB of RAM
(10 * 2.5 = 25). This estimate is based on 10 GB to store the dataset in-
memory, another 10 GB for a copy of the dataset which is created during
full refresh/processing operations, and an extra 5 GB to support
temporary memory structures that can be required to resolve user
queries.

Note that this example is exclusive to import mode datasets
hosted in the Power BI premium capacity (the backend server). A
separate architecture and considerations for capacity nodes
apply when query requests are routed to Analysis Services
models via Live connection or a DirectQuery data source such as
Teradata or SAP HANA. From a premium capacity perspective,
in these scenarios, the BI team would need to determine via load
testing and the usage metrics described in the Monitor premium
capacities section of Chapter 18, Administering Power BI for an
Organization, whether the query throughput limit (60 per
second for P2) to these sources will be sufficient. If this
throughput level is sufficient yet performance is still
unacceptable, several other components of the overall solution
could represent the performance bottleneck and could be
evaluated separately.

These other components or factors impacting performance
include the design of the data model and the efficiency or
complexity of DAX measures, the design of the data source and
its available resources, the design of Power BI reports (for
example, quantity and type of visuals), the resources and
performance of the gateway server(s) if applicable, the network
connection between the Power BI service and the data source,
and the level of user interactivity with reports. Techniques and
practices to optimize data models and the visualization layer in
Power BI are provided in the Data model optimizations and
Report and visualization optimizations sections later in this
chapter, respectively.

Power BI Premium capacity
allocation
Although it's possible to broadly assign all app workspaces (and
thus all content) of an organization to a single premium capacity,
most organizations will want to efficiently allocate and manage
these resources. For example, certain Power BI reports and
dashboards that are utilized by executives or which contribute to
important business processes will be identified and prioritized
for premium capacity. In an initial deployment of a premium
capacity, a BI/IT team may exclusively assign the workspaces
associated with content considered mission critical to this
capacity. This capacity may remain isolated to the specific
workload(s) or, based on testing and monitoring, the BI team
may determine that sufficient resources are available to support
additional workspaces and their associated resource
requirements.

Similar to provisioning a premium capacity exclusive to high-
value content, a premium capacity may be provisioned due to the
unique requirements of a particular solution. As one example, a
new Power BI dataset may be developed that represents a data
source or business process not currently supported in the data
warehouse. In this scenario, a large import mode Power BI
dataset, perhaps initially developed by the business team, would
serve as the source for reports and dashboards which require
distribution to many Power BI Free users or even the entire
organization. Given these characteristics, a premium capacity
node could be provisioned and dedicated to the app workspace
hosting this dataset and its visualizations so that no other
solution could impact its performance.

The following section describes a capacity planning method.

Corporate and Self-Service BI
capacity
As described in the Data governance for Power BI section of Chap
ter 18, Administering Power BI for an Organization, certain
projects will likely be wholly owned by the BI/IT team including
the report and visualization layer. Other projects, however, may
be owned by business units or teams but still require or benefit
from IT-provided resources such as the On-premises data
gateway and premium capacity. The BI department can manage
a continuous life cycle over both project types (Corporate BI,
Self-Service BI) by validating use cases or requirements for
premium capacity. Additionally, the migration of Power BI
content across distinct premium capacities could become part of
a standard migration process from a self-service solution to a
corporate BI owned solution.

The provisioning and allocation of Power BI Premium capacity
can further reflect an organization's support for both Corporate
and Self-Service BI solutions. Typically the Power BI content
created and managed by IT is considered mission critical to the
organization or is accessed by a high volume of users. Self-
service BI solutions, however, tend to utilize smaller datasets
and usually need to be accessible to a smaller group of users.

The following example allocation includes two premium
capacities, a P3, and a P2, dedicated to Corporate BI
Capacity and Self-Service BI Capacity content, respectively:

Power BI Premium Capacity allocation: Corporate and Self-Service BI

As shown in the diagram the sales, and a finance app workspace
has been assigned to a P3 capacity dedicated to corporate BI
solutions. As described in the Premium capacity nodes section
earlier, a P3 capacity is currently the largest premium capacity
available with 32 v-cores. These additional resources and limits,
such as a max of 120 DirectQuery or Live connection queries per
second, may be required to support organization-wide usage and
an optimal user experience.

The Human Resources and Purchasing workspaces, however,
have been assigned to a P2 Premium capacity dedicated to self-
service BI projects. For example, certain Power BI Pro users in
these departments have developed datasets and reports that
have proven to be valuable to several stakeholders. The
assignment of these workspaces to premium capacity enables
these users to make this content accessible to a wider audience,
such as the 20 Power BI Free users in the Purchasing
department.

Remember that not all app workspaces will need to consume premium
capacity resources. A team of Power BI Pro users may collaborate within
an app workspace and still be effective with the content hosted in the
shared capacity. Premium capacity is only needed in scenarios requiring
broad distribution to read-only Power BI Free users or when the
additional capabilities (for example, large datasets) identified in the
Power BI Premium capabilities section earlier in this chapter are
required.

In the event that one of the self-service solutions needs to be
migrated to the corporate BI team, the BI team could re-assign
the workspace to the existing P3 capacity. Alternatively, to avoid
consuming any additional resources of the existing P3 capacity
and potentially impacting these workloads, a new corporate BI
capacity could be created for the workspace.

BI teams will consistently need to evaluate the trade-offs
involved with isolating projects/solutions to specific premium
capacities. Assigning a single workspace or multiple related
workspaces to a dedicated capacity ensures that no other project
or activity will impact performance. However, many dedicated
premium capacities may become onerous to manage and could
be an inefficient use of resources if the Power BI workload
doesn't fully utilize the resources. Ultimately, teams will need to
monitor capacity resource utilization and either re-allocate and
re-assign capacities and workspaces, respectively, or provision
additional premium resources (v-cores) and scale up existing
capacities.

Power BI Premium resource
utilization
Given the cost of premium capacity, BI teams will want to follow
practices to ensure that these resources are actually required and
not being used inefficiently. For example, with large import
mode datasets, a simple design change such as the removal of
unused columns from a fact table can significantly reduce the
size of the dataset and thus the amount of memory needed. By
following a series of recommended practices in terms of both
modeling and report design, less premium capacity resources
will be required to deliver the same query performance and
scale.

With small-scale self-service BI datasets and reports, performance
tuning and optimization is usually not necessary. Nonetheless, as these
models and reports can later take on greater scale and importance, a
basic review of the solution can be applied before the content is assigned
to premium capacity. For example, the BI/IT team can identify a few
small changes to be implemented prior to assigning the pro user's
workspace to premium capacity.

The following two sections identify several of the top data
modeling and report design practices to efficiently utilize
hardware resources.

Data model optimizations
For many data models, particularly those that were developed as
part of pilot projects or by business users, a number of
modifications can be implemented to reduce resource
requirements or improve query performance. Therefore, prior to
concluding that a certain amount of Premium capacity (or
Analysis Services resources) is required, data models can be
evaluated against a number of standard design practices and
optimization techniques such as the following:

Avoid duplicate or near-duplicate data models:

Design and maintain a consolidated, standardized
data model of fact and dimension tables.

Remove tables and columns that aren't needed by the
model:

For import mode models, columns with the
unique values (cardinality) will be the most
expensive to store and scan at query time.

The Fact table columns section of Chapter
9, Designing Import and DirectQuery Data
Models provides examples of avoiding derived
columns that, for import mode models, can be

efficiently implemented via DAX measures.

Reduce the precision and cardinality of columns when
possible:

If four digits to the right of the decimal place are
sufficient precision, revise a column's data type
from a Decimal number to a Fixed decimal
number (19, 4):

Apply rounding if even less precision is
required.

Split columns containing multiple values such as a
datetime column into separate columns (date and
time).

Limit or avoid high cardinality relationships, such as
dimension tables with over 1.5 million rows:

Consider splitting very large dimension tables into
two tables and defining relationships between
these tables and the fact table. The less granular
table (such as Product Subcategory grain) could
support most reports while the more granular
table (such as Product) could be used only when this
granularity is required.

Only use iterating DAX functions such as SUMX(), RANKX(),
and FILTER() when either the table iterated over is small or
when the row expression for these functions can be
executed by the storage engine:

Simple expressions such as the multiplication of
two columns from the table being iterated over
can be executed by the storage engine.

Use whole number (integer) data types instead of text
data types whenever possible.

If the data model uses a DirectQuery data source,
optimize this source such as with indexes or columnar
technologies available such as the Clustered Columnstore Index
for SQL Server:

Additionally, ensure that the source database
supports referential integrity and that the
DirectQuery model assumes referential integrity
in its defined relationships. This will result in
inner join queries to the source.

The Fact-to-dimension relationships
section of Chapter 9, Designing Import and
DirectQuery Data Models, contains
additional details.

Avoid or limit DISTINCTCOUNT() measures against high
cardinality columns:

For example, create the DISTINCTCOUNT() measure
expression against the natural key or business key
column identifying the dimension member (such
as Customer ABC), rather than the columns used in the
fact-to-dimension relationship. With slowly
changing dimension processes, the relationship
columns could store many more unique values per
dimension member and thus reduce
performance.

Avoid the use of calculated DAX columns on fact tables:

Create these columns in the source system or in
the queries used to load the model to allow for
better data compression.

For DirectQuery models, avoid the use of DAX
calculated columns for all tables.

Report and visualization
optimizations
A well-designed analytical model with ample resources can still
struggle to produce adequate performance due to an inefficient
visualization layer. The following list of techniques can be
applied to Power BI reports and dashboards to reduce the query
workload and avoid slower resource-intensive queries:

Create dashboards on top of reports to leverage cached
query results representing the latest data refresh:

Unlike dashboards, report queries are sent and
executed on the fly when Power BI reports are
loaded.

Multiple dashboards can be linked together as
described in Chapter 13, Designing Power BI
Dashboards and Architectures.

If the dataset uses a DirectQuery or Live
connection, take advantage of scheduled cache
refresh as described in the Dashboard cache
refresh section of Chapter 15, Managing the On-
Premises Data Gateway.

Avoid report visuals that return large amounts of data

such as tables with thousands of rows and many
columns:

Report visuals that require scrolling or which
represent a data extract format should be filtered
and summarized.

Report visuals that return more data points than
necessary to address their business question can
be modified to a lower granularity. For example, a
dense scatter chart of individual products could
be modified to use the less granular product
subcategories column.

Ensure that filters are being applied to reports so that
only the required data is returned:

Apply report level filters to only return the time
periods needed (such as current year and last
year).

Use visual level filters such as a top N filter as
described in the Visual-level filtering section of Ch
apter 11, Creating and Formatting Power BI
Reports.

Limit the volume of visuals used on a given report page:

Optionally remove the interactions between

visuals (cross-highlighting) to further reduce
report queries.

Understand which DAX measures are less performant
and only use these measures when required:

For example, only use expensive measures in card
visuals or within highly filtered visuals exposing
only a few distinct numbers.

Premium capacity estimations
The volume of factors involved in premium capacity utilization
makes it difficult to forecast the amount of premium capacity
(and thus cost) required. This complexity is particularly acute for
large deployments with diverse use cases to support.
Additionally, for organizations relatively new to Power BI, the
level and growth of user adoption, as well as the requirements
for future projects, can be unclear. Nonetheless, to provide an
initial estimate of the cost of deploying Power BI with premium
capacities, Microsoft has developed the Power BI Premium
calculator. This online forecasting tool provides free estimates of
the combined monthly cost of Power BI Pro licenses and Power
BI Premium capacity.

In the following screenshot of the Power BI Premium calculator,
the user has specified 2,500 total Power BI users and used the
two slider bars to distribute those users among the following
profiles—Pro Users, Frequent Users, and Occasional Users:

Power BI Premium calculator

In the example, 170 Pro Users results in 170 Pro licenses costing
a total of $1,700 per month (170 * $10/mo). More importantly,
the calculator estimates that two P1 nodes (8 v-cores) of
Premium capacity will be required for the organization at a cost
of $9,990 per month (2 * $4,995/mo). Therefore, an
organization could use $11,690 per month as an initial and high-
level estimate of their Power BI deployment. The Power BI
Premium calculator is accessible at the following URL http://bit.ly
/2eKil1I.

Thankfully the P1 month-to-month SKU eliminates the need for
organizations to make large financial commitments in advance
of actual usage. The 8 v-cores provided by a Premium P1 capacity

http://bit.ly/2eKil1I

(month-to-month) can be acquired in the Office 365 admin
center as shown in the following screenshot:

Premium Capacity: Month to month

In a fiscally conservative approach, an organization could create
a single P1 capacity and test this capacity against different
workloads until both the usage metrics described in the previous
chapter and actual load test experiences suggest additional
capacity is needed. Load testing of premium capacity typically
consists of multiple users simulating normal user behaviors in
the Power BI service such as clicking a slicer, pausing to view the
results of a selection, and then making another filter selection.
Additional options and guidance for load testing premium
capacity are included in the Power BI Premium Capacity
Planning and Deployment Whitepaper available at the following
URL http://bit.ly/2Hu57DK.

http://bit.ly/2Hu57DK

Once it's determined that additional capacity is needed, an
organization can simply provision another instance of a P1
(month-to-month) thus obtaining 16 total v-cores. In the
following image from the Purchase services page of the Office
365 admin center, the quantity of an existing P1 (month-to-
month) SKU can be revised:

Purchasing additional premium capacity

Selecting the ellipsis (...) at the bottom of the Premium SKU
exposes the Change license quantity option. Once the number of
premium instances has been increased and submitted, the
additional v-cores will be available in the Capacity settings page
of the Power BI admin portal. Creating and managing premium
capacities, including the assignment of app workspaces to
premium capacities, was described in Chapter 18, Administering
Power BI for an Organization.

With both v-core pooling and single-click scale up capabilities
available in the Power BI admin portal it's very easy to reallocate
premium capacity. In this example with 16 total v-cores

purchased, an existing P1 capacity could be scaled up to a P2
capacity. Alternatively, a new and isolated P1 capacity could be
created thus leaving two P1 capacities to handle the distinct
workloads generated by different app workspaces.

The three-step process of purchasing additional v-cores, scaling
up existing capacities or configuring new capacities, and testing
workloads against premium capacities by assigning workspaces
to those capacities will be repeated throughout the deployment
lifecycle. In the event that usage or resource needs decline, the
monthly price for a P1 month-to-month instance can be avoided
thus reducing the amount of v-cores available.

The flexibility of premium capacity and other cloud services such
as Azure Analysis Services naturally aligns with the frequently
changing needs of BI projects. The following sections describe
both AAS and SSAS as a primary tool to complement Power BI
Premium and to support large-scale enterprise deployments of
Power BI.

Analysis Services
Analysis Services has been Microsoft's enterprise Online
Analytical Processing (OLAP) BI engine for many years. The
Analysis Services Tabular model including the DAX
programming language, in-memory and columnar storage, and
columnar compression was first introduced with Microsoft's
entry to self-service business intelligence with Power Pivot for
Excel 2010. Analysis Services Tabular, which now includes the
Power Query M programming language and the optional
DirectQuery storage mode described earlier in this book, is the
default installation mode of SSAS 2017. Additionally, the
Analysis Services Tabular engine is built into Excel, Power BI,
and the Azure Analysis Services PaaS offering.

The data model built into Excel workbooks is limited to in-memory
storage mode and does not support bi-directional relationships.
Additionally, Excel workbooks containing data models are limited to 250
MB and cannot be used as sources for Live connection Power BI reports
or via Analyze in Excel like published Power BI datasets. For these
reasons and many other features exclusive to Power BI Desktop and
Power BI datasets, Power BI Desktop is recommended over Excel for
creating data models in almost all scenarios.

SSAS also continues to support multidimensional mode
instances, which consist of row and disk-based storage, and
Multidimensional Expressions (MDX) for business logic.
Despite structural advantages of tabular mode,
multidimensional mode remains popular as it was available long
before tabular mode and since it included many additional
features relative to the initial releases of tabular mode. Power BI
reports can leverage SSAS multidimensional models as Live
connection data sources just like SSAS Tabular models and
Microsoft has been clear that multidimensional mode will not be

deprecated. However, multidimensional mode instances are
currently not available in Azure Analysis Services and many new
features and capabilities introduced in the past two years have
been exclusive to tabular models.

Analysis Services Tabular, either via SSAS or Azure Analysis
Services (Azure AS) instances, is recommended over
multidimensional mode for new enterprise BI models. Similar to
Power BI Desktop over Excel for self-service modeling and
reporting, this recommendation is better aligned with
Microsoft's BI roadmap and thus entails access to new features
and capabilities. Additionally, given the common underlying
engine between Power BI and Analysis Services Tabular,
experience with Analysis Services Tabular positions
organizations to better manage the relationship between Self-
Service BI and Corporate BI.

Analysis Services Models versus
Power BI Desktop
A local instance of Analysis Services Tabular is used by Power BI
Desktop when creating both import and DirectQuery data
models. When these models are published to the Power BI
Service as Power BI Desktop (.PBIX) files, the Power BI service
extracts the Analysis Services database from the Power BI
Desktop file and provides an Analysis Services server instance
for running the database in Power BI. However, despite this very
deep integration with Analysis Services, Power BI Desktop is
primarily targeted at business analysts and self-service BI, while
Analysis Services is intended for business intelligence
professionals and enterprise BI solutions.

Given these different target personas and use cases, many
features and capabilities of Analysis Services Tabular models are
not available to Power BI Desktop. For example, BI/IT
organizations generally utilize robust version control systems
such as Visual Studio Team Services (VSTS) and multiple
tools and programmatic interfaces to manage and administer
their solutions. Additionally, there are modeling features of
Analysis Services including Perspectives, Display Folders,
and KPIs that are currently not accessible to dataset designers
of Power BI datasets.

The following table compares Power BI Desktop models to
Analysis Services (Tabular) models across 19 features:

Power BI Desktop versus Analysis Services feature matrix

As shown in the table, Analysis Services Tabular models,
whether deployed to SSAS or Azure AS instances, are able to
provide both maximum modeling functionality to aid the user
experience as well as rich administrative tools and interfaces. It's
outside the scope of this chapter to describe each feature, but the
following three sections summarize the primary incremental
benefits provided by Analysis Services over Power BI datasets
built with Power BI Desktop.

Per the Power BI Premium capabilities section earlier in this chapter (see
Capability #11), the same tools used to interface with Analysis Services
servers will soon (2018) be available for app workspaces assigned to a
Power BI premium capacity. For example, a BI team could use Visual
Studio and SQL Server Management Studio (SSMS) for
development and management of the Power BI dataset, respectively.
Likewise, popular BI and data visualization tools such as Tableau could
be used to connect to Power BI datasets stored in premium capacity.

In addition to the features identified in the table and described
in the following sections, Analysis Services models avoid the
dataset per app workspace limitation described in the Corporate
Power BI datasets section earlier. A single Analysis Services
model and its refresh process can be leveraged across multiple
app workspaces and their corresponding Power BI apps.

Scale
Partitions are the key to scaling in-memory SSAS Tabular
models as only certain partitions, such as the partitions
representing the last two months of data, need to be included in
a recurring refresh process.

These partitions can be defined in SQL Server Data Tools
(SSDT) as shown in the following screenshot, and many
patterns and practices have been documented for automating the
management and refresh of partitions:

Partition Manager in SQL Server Data Tools (SSDT)

In the preceding screenshot, the Reseller Sales table is comprised
of multiple yearly partitions (that is, ResellerSales2018). In most
large models, the partitions would be much smaller (months,
weeks) and logic would be built into a refresh process for
dynamically determining which partitions to process and which
(if any) to add or delete. Incremental data refresh for Power BI
datasets hosted in Power BI Premium capacities is expected to
offer the same essential as partitions in terms of minimizing
refresh times and resources. However, it's unlikely that

incremental data refresh will offer the same level of complete
control.

Scaling out query workloads across multiple Analysis Services
servers and implementing load balancing is also a very
important feature of enterprise deployments. Azure Analysis
Services greatly simplifies this setup and the planning involved
by providing the following interface in the Azure portal:

Scale out via Replicas in Azure Analysis Services

As shown in the preceding screenshot, up to seven query replicas
of an Azure Analysis Services server can be created. If the
processing server responsible for the data refresh process is not
separated from the querying pool, a total of eight analysis
services servers would be available in the Azure cloud to resolve
queries from Power BI and other tools such as Excel and Tableau
with load balancing provided automatically by Azure Analysis
Services.

In addition to the Azure portal interface, the Analysis Services REST API
can be used to configure scale-out.

Scale out architectures are certainly also supported with SSAS
Tabular in on-premises environments, but require significantly
more planning and coordination to provision and configure the
infrastructure.

Usability
Large enterprise models support many users from across the
organization and typically each user only requires access to a
section of the model. For example, a sales team member may
only need to access a sales fact table and several dimension
tables and thus shouldn't have to navigate through many other
irrelevant tables that support other business teams. Perspectives
in Analysis Services allow the modeler to map objects of the
model (tables, columns, and measures) to a specific perspective
such that users connecting to the model via the perspective only
see those objects.

Display folders including hierarchies of folders (that is,
subfolders) can be defined for Analysis Services models to
simplify user access to measures and columns. In the following
example from a Power BI Live connection report to an Analysis
Services model, the measures associated with the Internet Sales
and Reseller Sales fact tables have been grouped into display
folders for each fact table:

Analysis Services Display Folders

Given the high volume of date intelligence measures, it's often
best to isolate these measures so that the user can easily access
the most common and basic measures such as total sales or the
count of the products sold.

Another usability feature of Analysis Services not supported by
Power BI currently includes support for multiple languages:

Multi-language support in Analysis Services

In Analysis Services projects within Visual Studio, the model
author can export an empty JSON that contains placeholders for

the translations, add string translations to the file, and then
import the JSON file back to the model for access by users.

Development and management
tools
Power BI Desktop is much closer to a Microsoft Office
application than an integrated development environment
(IDE) tool such as Visual Studio, which offers granular control
over the data model. With Analysis Services, business
intelligence developers and the teams responsible for Analysis
Services models can take advantage of the rich development
experience built into SSDT for Visual Studio, as well as familiar
management capabilities available in SQL Server
Management Studio (SSMS). Additionally, these same tools
can be used for both AAS and SSAS models.

For example, the following screenshot from an Analysis Services
project in Visual Studio 2017 exposes the DAX Editor window
(left) and the Tabular Model Explorer interface (right):

DAX Editor and Tabular Model Explorer in Visual Studio

With the Tabular Model Explorer, the model developer has a
central location to find, view, and optionally edit the objects of
the model. This interface, along with the DAX Editor window, is
very helpful when working with large models containing many
tables and complex DAX expressions.

In terms of managing deployed models, SSMS provides a
familiar object explorer interface and enhanced support for DAX
queries, as shown in the following screenshot:

SQL Server Management Studio (SSMS)

In the preceding screenshot, the same data model
(AdWorksImport) from Visual Studio is accessed from SSMS
and an ad hoc DAX query is authored in the query window. In
addition to the new .MSDAX files for DAX queries, Tabular Model
Scripting Language (TMSL) commands can be scripted and
executed in SSMS.

Azure Analysis Services versus
SSAS
For many organizations, the Power BI service is only a part of an
existing and broader cloud-based data and analytics
environment. For example, the organization may already be
using the Azure Data Lake Store (ADLS), Azure SQL
Database, or Azure SQL Data Warehouse cloud services to store
and process data for reporting analysis. In other organizations,
the adoption of the Power BI service as a primary BI and
collaboration platform may be part of a larger migration from an
on-premises BI environment to the cloud. As one example of this
migration, existing extract-transform-load (ETL) packages
executed via on-premises SQL Server Integration Services
(SSIS) servers could be moved (lift and shift) to virtual
machines (VMs) in Azure and managed through the Azure
Data Factory cloud service.

Even if neither of these two scenarios applies in the short term,
an organization may still choose Azure Analysis Services over
SSAS to reap the cost, performance, and agility benefits (scale-
up/down) of this PaaS offering. With an Azure Analysis Services
instance storing the data model(s) queried from Power BI within
the same data region as the Power BI service tenant, the report
and dashboard queries generated by Power BI avoid the latency
incurred by accessing an on-premises SSAS instance via the On-
premises data gateway. If data source(s) of the Analysis Services
model remain on-premises, the same On-premises data gateway
described in Chapter 15, Managing the On-Premises Data
Gateway, can be used to support a recurring data refresh
process of Azure Analysis Services models from on-premises

sources.

Perhaps even more important than query performance, Azure
Analysis Services dramatically reduces the following challenges
with deploying SSAS at scale in enterprises:

1. Planning server resource requirements:

1. It's difficult to accurately predict how much CPU
and RAM will be needed by an Analysis Services
server, even for the next 1-2 years. Additionally,
the optimal hardware for Analysis Services, such
as CPU clock speed and NUMA Awareness, is
sometimes not fully communicated or delivered
when provisioning these servers.

2. With Azure AS, optimally tuned Analysis Services
resources can be quickly and easily aligned to
changing needs of the workload by switching
pricing tiers.

3. BI teams can even schedule Azure AS resources to
be scaled up at certain times to support high
query volumes (such as every Monday morning)
and then scaled down or even paused at times of
low query volume such as nights and weekends.

2. Installation and server maintenance:

1. In an on-premises environment, SSAS has to be

installed on the provisioned server and the server
itself has to be managed and patched.

2. As a PaaS offering, Azure AS servers are fully
installed once deployed and the underlying
servers are maintained by Microsoft to support
99.9 percent availability.

3. Implementing scale-out:

1. Provisioning the read-only query servers, the
processing servers, and configuring load
balancing can take weeks or longer in on-premises
environments.

2. As depicted in the Scale section earlier, Azure
Analysis Services provides a graphical interface to
easily configure a pool of read-only query replicas
for distributing or balancing query requests.

These considerations specific to Analysis Services, as well as the
broader advantages of a cloud architecture, serve as powerful
motivation to choose Azure Analysis Services over SQL Server
Analysis Services. For example, new features and enhancements
to Azure Analysis Services are released more frequently than
versions of SSAS, and some of these new features such as the
Azure Analysis Services web designer are exclusive to the cloud
service. Additionally, Azure AS instances are able to benefit from
new capabilities and ongoing investments in other Azure services
such as Azure Automation and Azure Functions. This is similar
to the advantage of the Power BI service over the Power BI

Report Server as described in Chapter 16, Deploying the Power BI
Report Server.

SSAS to Azure AS Migration
Organizations with existing SSAS Tabular models may choose to
migrate to Azure Analysis Services to support their Power BI
deployment and for other reasons identified in previous sections.
This can be accomplished by deploying an existing on-premises
model (.bim file) to an Azure Analysis Services instance from
SSDT in Visual Studio.

In the following screenshot, the deployment server of an existing
SSAS model is changed to an Azure Analysis Services server:

Analysis Services Tabular project: Project properties page

This page can be accessed by right-clicking the Analysis Services
project name in SSDT and selecting Configuration Properties.
Via the Do Not Process from the Processing Option property,
only the metadata of the model will be deployed to the Azure
Analysis Services server. Additionally, note that the server name
to ensure should be the management server name provided by

Azure Analysis Services in the Azure portal as described in the
following section.

With a successful deployment of the model's metadata from
SSDT, the user can manage and process the Azure Analysis
Services model in SSMS. In the following screenshot, the same
AdWorksImport model is now deployed to both an on-premises
server (ATLAS) and the Azure Analysis Services server:

SSAS and Azure Analysis Services instances in SSMS

As shown in the preceding screenshot, the AdWorksImport
database is now deployed to both an on-premises instance of
SQL Server Analysis Services (Tabular) and an Azure Analysis
Services instance. The same functionality SSAS developers and
managers are familiar with in SSMS, such as viewing and
processing partitions and tables of models, is still fully supported
with Azure Analysis Services.

Provision Azure Analysis
Services
Azure Analysis Services can be found within the Data and
Analytics tab in the Azure Marketplace. Clicking the Analysis
Services icon presents a configuration blade to define the new
resource including its location (data center region) and pricing
tier.

In the following screenshot, a new Azure AS instance (Frontline) is
created in the North Central US region and for the S0 pricing
tier:

Provision Azure Analysis Services Instance

The view full pricing details link has been accessed in the
preceding screenshot to expose additional SKUs currently
supported. As of this writing, the largest Azure AS instance is an
S9 with 640 Query Processing Units (QPUs) and 400 GB of
memory. A single virtual core is currently approximately equal to
25 QPUs and thus an S9 server instance can be estimated at 25
to 26 virtual cores (640 / 25 = 25.6). The full list of SKUs,
including the Basic tier (B1, B2) and additional details on
pricing, is available at the Analysis Services Pricing page http://bit
.ly/2ooOKQI.

The location of the Azure Analysis Services instance should match the
location of the Power BI service tenant. The location of the Power BI
Service tenant can be found via the About Power BI menu item under the
question mark icon in the Power BI Service as illustrated in the Identify
where the gateway should be installed section of Chapter 15, Managing the
On-Premises Data Gateway.

Once all required input boxes have been completed, clicking
create starts the deployment process, which typically requires
less than a minute. By default, the deployed Azure AS resource
will be running but can be paused to avoid incurring any further
charges, as shown in the following screenshot from the Overview
page:

http://bit.ly/2ooOKQI

Deployed and running Azure Analysis Services instance

As shown in the preceding screenshot, both a Server name and a
Management Server Name are provided on the Overview tab.
The Server name is what should be used by client applications
such as Power BI Desktop and Excel. The Management Server
Name, which includes an :rw qualifier, should be used in SSMS,
SSDT, and other operational or administrative tools such as
PowerShell.

A server name alias can be created to provide a more friendly server
name when creating reports. The alias created is specified as an
endpoint using the link:// format and the alias endpoint returns the real
server name in order to connect to the server. Details on created Azure
Analysis Services server aliases are available at the following URL http://b
it.ly/2EN2LC3.

In addition to the Azure AS resource itself, if a data model on the
Azure AS server needs to retrieve data from an on-premises
source, it will be necessary to create an On-premises data
gateway resource in the Azure portal as well. The Azure Analysis
Services section of Chapter 15, Managing the On-Premises Data
Gateway, includes details on creating and configuring this
resource.

http://bit.ly/2EN2LC3

Migration of Power BI Desktop
to Analysis Services
The Azure Analysis Services web designer, currently in preview,
supports the ability to import a data model contained within a
Power BI Desktop file. The imported or migrated model can then
take advantage of the resources available to the Azure Analysis
Services server and can be accessed from client tools such as
Power BI Desktop. Additionally, Azure Analysis Services
provides a Visual Studio project file and a Model.bim file for the
migrated model that a corporate BI team can use in SSDT for
Visual Studio.

The following process migrates the model within a Power BI
Desktop file to an Azure Analysis Server and downloads the
Visual Studio project file for the migrated model:

1. Open the Web designer from the Overview page of the
Azure Analysis Services resource in the Azure portal

2. On the Models form, click Add and then provide a name
for the new model in the New model form

3. Select the Power BI Desktop File source icon at the
bottom and choose the file on the Import menu

4. Click Import to begin the migration process

The following screenshot represents these four steps
from the Azure Analysis Services web designer:

Create an Analysis Services model from a Power BI Desktop File

In this example, a Power BI Desktop file (AdWorks
Enterprise.pbix) that contains an import mode model
based on two on-premises sources (SQL Server and
Excel) is imported via the Azure Analysis Services web
designer.

Once the import is complete, the Field list from the
model will be exposed on the right and the imported
model will be accessible from client tools like any
other Azure Analysis Services model. For example,
refreshing the Azure AS server in SQL Server
Management Studio will expose the new database

(AdWorks Enterprise). Likewise, the Azure Analysis
Services database connection in Power BI Desktop
(Get Data | Azure) can be used to connect to the
migrated model, as shown in the following screenshot:

Migrated Model accessed from Azure as server in Power BI Desktop

Just like the SQL Server Analysis Services database
connection (Get Data | Database), the only required
field is the name of the server which is provided in the
Azure portal as described in the Provision Azure
Analysis Services section earlier.

5. From the Overview page of the Azure Analysis Services
resource, select the Open in Visual Studio project option
from the context menu on the far right, as shown in the
following screenshot:

Context menu in Azure Portal for a model

6. Save the zip file provided by Azure Analysis Services to a
secure local network location.

7. Extract the files from the zip file to expose the Analysis
Services project and .bim file, as shown in the following
screenshot:

Folder contents downloaded from Azure Analysis Services

8. In Visual Studio, open a project/solution (File | Open |
Project/Solution) and navigate to the downloaded project
file (.smproj). Select the project file and click Open.

9. Double-click the Model.bim file in the Solution Explorer
window to expose the metadata of the migrated model.

All of the objects of the data model built into the Power BI
Desktop file including Data Sources, Queries, and Measures are
accessible in SSDT just like standard Analysis Services projects,
as shown in the following screenshot:

Migrated model opened as Analysis Services Project

The preceding screenshot from Diagram view in SQL Server
Data Tools exposes the two on-premises sources of the imported
PBIX file via the Tabular Model Explorer window. By default, the
deployment server of the Analysis Services project in SSDT is set
to the Azure Analysis Services server, but this can be revised as
was described in the SSAS to Azure AS Migration section
earlier.

Since the ability to import a Power BI Desktop file directly in SSDT is not
yet available, BI teams with on-premises SSAS environments could
temporarily provision an Azure Analysis Services server to support
migrations. Once the project file is downloaded from Azure, the Azure AS
server could be paused or deleted and the deployment server property in
the project could be revised to an SSAS server.

As an alternative to a new solution with a single project, an
existing solution with an existing Analysis Services project could
be opened and the new project from the migration could be

added to this solution. This can be accomplished by right-
clicking the existing solution's name in the Solution Explorer
window and selecting the Existing project from the Add menu
(Add | Existing project).

This approach allows the corporate BI developer to view and
compare both models and optionally implement incremental
changes, such as new columns or measures that were exclusive to
the Power BI Desktop file.

The following screenshot from a solution in Visual Studio
includes both the migrated model (via the project file) and an
existing Analysis Services model (AdWorks Import):

Tabular Model Explorer

The ability to quickly migrate Power BI datasets to Analysis
Services models complements the flexibility and scale of Power
BI Premium capacity in allowing organizations to manage and
deploy Power BI on their terms.

Summary
This chapter reviewed Power BI Premium and Analysis Services
as the primary means to deploy Power BI at scale and with
enterprise BI tools and controls. The current and future features
of Power BI Premium were described, as well as the factors to
account for inefficiently provisioning and allocating premium
capacity. Additionally, Analysis Services was contrasted with
Power BI Desktop-based datasets to expose the features and
benefits exclusive to Microsoft's enterprise BI modeling tool.
Moreover, details were provided in comparing Azure Analysis
Services with SSAS and in migrating a Power BI Desktop model
to Analysis Services.

Power BI Premium and Analysis Services further Microsoft's
goal of providing organizations with the flexibility to deploy
Power BI on their terms. Organizations can quickly scale up a
self-service solution to support many users and they can also
migrate self-service content to IT-owned corporate BI solutions.
The common modeling engine between Power BI and Analysis
Services, as well as the elastic nature of cloud resources, serves to
both reduce the friction between self-service and corporate BI,
and reduce the time and costs associated with delivering BI
solutions.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other
books by Packt:

Microsoft Power BI Cookbook
Brett Powell

ISBN: 978-1-78829-014-2

Cleanse, stage, and integrate your data sources with
Power BI

Abstract data complexities and provide users with
intuitive, self-service BI capabilities

Build business logic and analysis into your solutions via
the DAX programming language and dynamic,
dashboard-ready calculations

Take advantage of the analytics and predictive
capabilities of Power BI

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Make your solutions more dynamic and user specific
and/or defined including use cases of parameters,
functions, and row level security

Understand the differences and implications of
DirectQuery, Live Connections, and Import-Mode Power
BI datasets and how to deploy content to the Power BI
Service and schedule refreshes

Integrate other Microsoft data tools such as Excel and
SQL Server Reporting Services into your Power BI
solution

Mastering Qlik Sense
Martin Mahler, Juan Ignacio Vitantonio

ISBN: 978-1-78355-402-7

Understand the importance of self-service analytics and
the IKEA-effect

Explore all the available data modeling techniques and
create efficient and optimized data models

Master security rules and translate permission

https://www.packtpub.com/big-data-and-business-intelligence/mastering-qlik-sense

requirements into security rule logic

Familiarize yourself with different types of Master Key
Item(MKI) and know how and when to use MKI.

Script and write sophisticated ETL code within Qlik
Sense to facilitate all data modeling and data loading
techniques

Get an extensive overview of which APIs are available in
Qlik Sense and how to take advantage of technology with
an API

Develop basic mashup HTML pages and deploy
successful mashup projects

Leave a review - let other
readers know what you think
Please share your thoughts on this book with others by leaving a
review on the site that you bought it from. If you purchased the
book from Amazon, please leave us an honest review on this
book's Amazon page. This is vital so that other potential readers
can see and use your unbiased opinion to make purchasing
decisions, we can understand what our customers think about
our products, and our authors can see your feedback on the title
that they have worked with Packt to create. It will only take a few
minutes of your time, but is valuable to other potential
customers, our authors, and Packt. Thank you!

	Title Page
	Copyright
	Microsoft Power BI Complete Reference

	About Packt
	Why subscribe?
	PacktPub.com

	Contributors
	About the authors
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Getting Started with Importing Data Options
	Getting started
	Importing data
	Excel as a source
	SQL Server as a source
	Web as a source

	DirectQuery
	Limitations

	Live Connection
	Limitations

	Which should I choose?
	Summary

	Data Transformation Strategies
	The Power Query Editor
	Transform basics
	Use First Row as Headers
	Remove Columns
	Change type
	Add Column From Examples

	Advanced data transformation options
	Conditional Columns
	Fill Down
	Unpivot
	Merging Queries
	Appending Queries

	Leveraging R
	Installation and configuration
	The R Script transform

	M formula language
	#shared

	Summary

	Building the Data Model
	Building relationships
	Editing relationships
	Creating a new relationship

	Working with complex relationships
	Many-to-many relationships
	Cross-filtering direction
	Enabling filtering from the many side of a relationship

	Role-playing tables
	Importing the date table

	Usability enhancements
	Hiding tables and columns
	Renaming tables and columns
	Default summarization
	How to display one column but sort by another
	Data categorization
	Creating hierarchies

	Summary

	Leveraging DAX
	Building calculated columns
	String functions – Month, Year
	Format function – Month Year
	Age calculation
	SWITCH() – age breakdown
	Navigation functions – RELATED

	Calculated measures – the basics
	Calculated measure – basic aggregations
	Total Sales
	Total Cost
	Profit
	Profit Margin
	Optional parameters

	Filter context
	Calculate
	Percentage of total calculation
	Time intelligence
	Year to Date Sales
	YTD Sales (Fiscal Calendar)
	Prior Year Sales

	Summary

	Visualizing Data
	Data visualization basics
	Visuals for filtering
	Interactive filtering
	The Slicer visual

	Visualizing tabular data
	The table visual
	The Matrix visual

	Visualizing categorical data
	Bar and Column charts
	Pie and Donut charts
	The Treemap visual
	The Scatter chart

	Visualizing trend data
	Line and Area charts
	Combo charts
	The Ribbon Chart
	The Waterfall Chart
	The Funnel Chart

	Visualizing KPI data
	The Gauge visual
	The KPI visual

	Visualizing geographical data
	The Map visual
	The Filled Map visual
	The Shape Map visual
	The ArcGIS Map visual

	Leveraging Power BI custom visuals
	Data visualization tips and tricks
	Edit interactions
	The Analytics pane
	The Top N filter
	Show value as

	Summary

	Using a Cloud Deployment with the Power BI Service
	Deploying to the Power BI service
	DATASETS
	WORKBOOKS

	Creating and interacting with dashboards
	Creating your first dashboard
	Asking your dashboard a question
	Subscribing to reports and dashboards

	Sharing your dashboards
	Workspaces

	Setting up row-level security
	Scheduling data refreshes
	Summary

	Planning Power BI Projects
	Power BI deployment modes
	Corporate BI
	Self-Service Visualization
	Self-Service BI
	Choosing a deployment mode

	Project discovery and ingestion
	Sample Power BI project template
	Sample template – Adventure Works BI

	Power BI project roles
	Dataset designer
	Report authors
	Power BI admin
	Project role collaboration

	Power BI licenses
	Power BI license scenarios
	Power BI Premium features

	Data warehouse bus matrix
	Dataset design process
	Selecting the business process
	Declaring the grain
	Identifying the dimensions
	Defining the facts

	Data profiling
	Dataset planning
	Data transformations
	DirectQuery mode

	Sample project analysis
	Summary

	Connecting to Sources and Transforming Data with M
	Query design per dataset mode
	Import mode dataset queries
	DirectQuery dataset queries

	Data sources
	Authentication
	Data source settings
	Privacy levels
	Power BI as a data source
	Power BI Desktop options
	Global options
	CURRENT FILE options

	SQL views
	SQL views versus M queries
	SQL view examples
	Date dimension view
	Mark As Date Table
	Product Dimension view

	Slowly-changing dimensions

	M queries
	Data Source Parameters
	Staging Queries
	DirectQuery staging

	Fact and dimension queries
	Source Reference Only

	M query summary
	Excel workbook – Annual Sales Plan

	Data types
	Item access in M
	DirectQuery report execution

	Bridge Tables Queries
	Parameter Tables
	Security Tables

	Query folding
	Partial query folding

	M Query examples
	Trailing three years filter
	Customer history column
	Derived column data types

	Product dimension integration

	M editing tools
	Advanced Editor
	Visual Studio Code
	Visual Studio

	Summary

	Designing Import and DirectQuery Data Models
	Dataset layers
	Dataset objectives
	Competing objectives
	External factors

	The Data Model
	The Relationships View
	The Data View
	The Report View
	Fact tables
	Fact table columns
	Fact column data types
	Fact-to-dimension relationships

	Bridge tables
	Parameter tables
	Measure groups
	Last refreshed date
	Measure support logic

	Relationships
	Uniqueness
	Ambiguity

	Model metadata
	Visibility
	Column metadata
	Default Summarization
	Data format
	Data category

	Field descriptions

	Optimizing performance
	Import
	Columnar compression
	Memory analysis via DMVs

	DirectQuery
	Optimized DAX functions
	Columnstore and HTAP

	Summary

	Developing DAX Measures and Security Roles
	DAX measures
	Measure evaluation process
	Row context
	Scalar and table functions
	The CALCULATE() function
	Related tables
	The FILTER() function

	DAX variables

	Base measures
	Measure support expressions
	KPI Targets
	Current and prior periods

	Date intelligence metrics
	Current versus prior and growth rates
	Rolling periods

	Dimension metrics
	Missing dimensions

	Ranking metrics
	Dynamic ranking measures

	Security roles
	Dynamic row-level security

	Performance testing
	DAX Studio
	Tracing a Power BI dataset via DAX Studio

	Summary

	Creating and Formatting Power BI Reports
	Report planning
	Power BI report architecture

	Live connections to Power BI datasets
	Customizing Live connection reports
	Switching source datasets

	Visualization best practices
	Visualization anti-patterns

	Choosing the visual
	Tables versus charts
	Chart selection

	Visual interactions
	Edit interactions
	What-if parameters

	Slicers
	Slicer synchronization
	Custom slicer parameters

	Report filter scopes
	Report filter conditions
	Report and page filters
	Page filter or slicer?

	Relative date filtering

	Visualization formatting
	Visual-level formatting
	Line and column charts
	Tooltips
	Report page tooltips

	Column and line chart conditional formatting
	Column chart conditional formatting
	Line chart conditional formatting

	Table and matrix
	Table and matrix conditional formatting
	Values as rows

	Scatter charts

	Map visuals
	Bubble map
	Filled map

	Mobile-optimized reports
	Responsive visuals

	Report design summary
	Summary

	Applying Custom Visuals, Animation, and Analytics
	Drillthrough report pages
	Custom labels and the back button
	Multi-column drillthrough

	Bookmarks
	Selection pane and the Spotlight property
	Custom report navigation
	View mode

	ArcGIS Map visual for Power BI
	ArcGIS Maps Plus subscriptions

	Waterfall chart breakdown
	Analytics pane
	Trend Line
	Forecast line

	Quick Insights
	Explain the increase/decrease

	Custom visuals
	Adding a custom visual
	Power KPI visual
	Chiclet Slicer
	Impact Bubble Chart
	Dot Plot by Maq Software

	Animation and data storytelling
	Play axis for scatter charts
	Pulse Chart

	Summary

	Designing Power BI Dashboards and Architectures
	Dashboards versus reports
	Multi-dashboard architectures
	Single-dashboard architecture
	Multiple-dashboard architecture
	Organizational dashboard architecture
	Multiple datasets

	Dashboard tiles
	Tile details and custom links
	Images and text boxes
	SQL Server Reporting Services
	Excel workbooks

	Live report pages
	Mobile-optimized dashboards
	Summary

	Managing Application Workspaces and Content
	Application workspaces
	Workspace roles and rights
	Workspace admins
	Workspace members

	My Workspace

	Staged deployments
	Workspace datasets
	Power BI REST API
	Client application ID
	Workspace and content IDs
	PowerShell sample scripts

	Dashboard data classifications
	Version control
	OneDrive for Business version history
	Source control for M and DAX code

	Metadata management
	Field descriptions
	Creating descriptions
	View field descriptions

	Metadata reporting
	Query field descriptions
	Standard metadata reports
	Server and database parameters
	Querying the DMVs from Power BI
	Integrating and enhancing DMV data
	Metadata report pages

	Summary

	Managing the On-Premises Data Gateway
	On-premises data gateway planning
	Top gateway planning tasks
	Determining whether a gateway is needed
	Identifying where the gateway should be installed
	Defining the gateway infrastructure and hardware requirements

	On-premises data gateway versus personal mode

	Gateway clusters
	Gateway architectures
	Gateway security
	Gateway configuration
	The gateway service account
	TCP versus HTTPS mode

	Managing gateway clusters
	Gateway administrators
	Gateway data sources and users
	PowerShell support for gateway clusters

	Troubleshooting and monitoring gateways
	Restoring, migrating, and taking over a gateway
	Gateway log files
	Performance Monitor counters

	DirectQuery datasets
	Single sign-on to DirectQuery sources via Kerberos

	Live connections to Analysis Services models
	Azure Analysis Services refresh

	Dashboard cache refresh
	Summary

	Deploying the Power BI Report Server
	Planning for the Power BI Report Server
	Feature differences with the Power BI service
	Parity with SQL Server Reporting Services
	Data sources and connectivity options
	Hardware and user licensing
	Pro licenses for report authors

	Alternative and hybrid deployment models
	Report Server reference topology

	Installation
	Hardware and software requirements
	Analysis Services Integrated

	Retrieve the Report Server product key
	Migrating from SQL Server Reporting Services

	Configuration
	Service Account
	Remote Report Server Database
	Office Online Server for Excel Workbooks

	Upgrade cycles
	Report Server Desktop Application
	Running desktop versions side by side

	Report Server Web Portal
	Scheduled data refresh
	Data source authentication

	Power BI mobile applications
	Report server administration
	Securing Power BI report content
	Execution logs

	Scale Power BI Report Server
	Summary

	Creating Power BI Apps and Content Distribution
	Content distribution methods
	Power BI apps
	Licensing apps
	App deployment process
	User permissions
	Publishing apps
	Installing apps
	Apps on Power BI mobile
	App updates
	Dataset-to-workspace relationship

	Self-Service BI workspace
	Self-Service content distribution
	Risks to Self-Service BI

	Sharing dashboards and reports
	Sharing scopes
	Sharing versus Power BI apps

	SharePoint Online embedding
	Custom application embedding
	Publish to web
	Data alerts
	Microsoft Flow integration

	Email Subscriptions
	Analyze in Excel
	Power BI Publisher for Excel

	Summary

	Administering Power BI for an Organization
	Data governance for Power BI
	Implementing data governance

	Azure Active Directory
	Azure AD B2B collaboration
	Licensing external users

	Conditional access policies

	Power BI Admin Portal
	Usage metrics
	Users and Audit logs
	Tenant settings
	Embed Codes
	Organizational Custom visuals

	Usage metrics reports
	Audit logs
	Audit log monitoring solutions
	Audit logs solution template

	Power BI Premium capacities
	Capacity allocation
	Create, size, and monitor capacities
	Change capacity size
	Monitor premium capacities

	App workspace assignment
	Capacity admins

	Summary

	Scaling with Premium and Analysis Services
	Power BI Premium
	Power BI Premium capabilities
	Corporate Power BI datasets
	Limitation of Corporate BI datasets – Reusability

	Premium capacity nodes
	Frontend versus backend resources

	Power BI Premium capacity allocation
	Corporate and Self-Service BI capacity
	Power BI Premium resource utilization
	Data model optimizations
	Report and visualization optimizations

	Premium capacity estimations
	Analysis Services
	Analysis Services Models versus Power BI Desktop
	Scale
	Usability
	Development and management tools

	Azure Analysis Services versus SSAS
	SSAS to Azure AS Migration

	Provision Azure Analysis Services

	Migration of Power BI Desktop to Analysis Services
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

